Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorURSU, Eugen
IDREF: 228232201
hal.structure.identifierGroupe de Recherche en Economie Théorique et Appliquée [GREThA]
dc.contributor.authorPEREAU, Jean-Christophe
IDREF: 086314629
dc.date.accessioned2020-02-19T21:24:30Z
dc.date.available2020-02-19T21:24:30Z
dc.date.issued2016
dc.identifier.issn14363240en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/3593
dc.description.abstractEnAccurate forecasting of river flows is one of the most important applications in hydrology, especially for the management of reservoir systems. To capture the seasonal variations in river flow statistics, this paper develops a robust modeling approach to identify and to estimate periodic autoregressive (PAR) model in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on residual autocovariances. A genetic algorithm with Bayes information criterion is used to identify the optimal PAR model. The method is applied to average monthly and quarter-monthly flow data (1959–2010) for the Garonne river in the southwest of France. Results show that the accuracy of forecasts is improved in the robust model with respect to the unrobust model for the quarter-monthly flows. By reducing the number of parameters to be estimated, the principle of parsimony favors the choice of the robust approach.
dc.language.isoENen_US
dc.subject.enStatistics
dc.subject.enGenetic Algorithms
dc.subject.enLeast-Squares Estimator
dc.subject.enFrance
dc.subject.enPeriodic Time Series
dc.subject.enBayes Information Criterion
dc.subject.enEstimation Method
dc.subject.enFlow Modeling
dc.subject.enFlow Of Water
dc.subject.enGaronne River
dc.subject.enGenetic Algorithm
dc.subject.enPeriodic Autoregressive Process
dc.subject.enPeriodic Time
dc.subject.enReservoir Management
dc.subject.enReservoir Systems
dc.subject.enRiver Flow
dc.subject.enRiver Flows Analysis
dc.subject.enRivers
dc.subject.enRobust Estimation
dc.subject.enSeasonal Variation
dc.subject.enTime Series
dc.subject.enTime Series Analysis
dc.title.enApplication of periodic autoregressive process to the modeling of the Garonne river flows
dc.title.alternativeStoch. Environ. Res. Risk Assess.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s00477-015-1193-3en_US
dc.subject.halÉconomie et finance quantitative [q-fin]en_US
bordeaux.journalStochastic Environmental Research and Risk Assessmenten_US
bordeaux.page1785-1795en_US
bordeaux.volume30en_US
bordeaux.hal.laboratoriesGroupe de Recherche en Economie Théorique et Appliquée (GREThA) - UMR 5113en_US
bordeaux.issue7en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03122627
hal.version1
hal.date.transferred2021-01-27T09:48:33Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Stochastic%20Environmental%20Research%20and%20Risk%20Assessment&rft.date=2016&rft.volume=30&rft.issue=7&rft.spage=1785-1795&rft.epage=1785-1795&rft.eissn=14363240&rft.issn=14363240&rft.au=URSU,%20Eugen&PEREAU,%20Jean-Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée