Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorATTYE, Arnaud
dc.contributor.authorRENARD, Felix
dc.contributor.authorBACIU, Monica
dc.contributor.authorROGER, Elise
dc.contributor.authorLAMALLE, Laurent
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDEHAIL, Patrick
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCASSOUDESALLE, Helene
dc.contributor.authorCALAMANTE, Fernando
dc.date.accessioned2021-05-10T09:08:15Z
dc.date.available2021-05-10T09:08:15Z
dc.date.issued2021-03-06
dc.identifier.issn1095-9572 (Electronic) 1053-8119 (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/27221
dc.description.abstractEnDeep learning-based convolutional neural networks have recently proved their efficiency in providing fast segmentation of major brain fascicles structures, based on diffusion-weighted imaging. The quantitative analysis of brain fascicles then relies on metrics either coming from the tractography process itself or from each voxel along the bundle. Statistical detection of abnormal voxels in the context of disease usually relies on univariate and multivariate statistics models, such as the General Linear Model (GLM). Yet in the case of high-dimensional low sample size data, the GLM often implies high standard deviation range in controls due to anatomical variability, despite the commonly used smoothing process. This can lead to difficulties to detect subtle quantitative alterations from a brain bundle at the voxel scale. Here we introduce TractLearn, a unified framework for brain fascicles quantitative analyses by using geodesic learning as a data-driven learning task. TractLearn allows a mapping between the image high-dimensional domain and the reduced latent space of brain fascicles using a Riemannian approach. We illustrate the robustness of this method on a healthy population with test-retest acquisition of multi-shell diffusion MRI data, demonstrating that it is possible to separately study the global effect due to different MRI sessions from the effect of local bundle alterations. We have then tested the efficiency of our algorithm on a sample of 5 age-matched subjects referred with mild traumatic brain injury. Our contributions are to propose: 1/ A manifold approach to capture controls variability as standard reference instead of an atlas approach based on a Euclidean mean. 2/ A tool to detect global variation of voxels' quantitative values, which accounts for voxels' interactions in a structure rather than analyzing voxels independently. 3/ A ready-to-plug algorithm to highlight nonlinear variation of diffusion MRI metrics. With this regard, TractLearn is a ready-to-use algorithm for precision medicine.
dc.description.sponsorshipEncodage Rapide et Adaptation Temps Réel pour Applications Neuro IRM Avancées - ANR-12-EMMA-0056en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enDiffusion MRI
dc.subject.enFiber tractography
dc.subject.enPrecision medicine
dc.subject.enManifold learning
dc.title.enTractLearn: A geodesic learning framework for quantitative analysis of brain bundles
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.neuroimage.2021.117927en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed33689863en_US
bordeaux.journalNeuroImageen_US
bordeaux.page117927en_US
bordeaux.volume233en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamHACSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDSociété Française de Radiologieen_US
hal.identifierhal-03222320
hal.version1
hal.date.transferred2021-05-10T09:08:21Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=NeuroImage&rft.date=2021-03-06&rft.volume=233&rft.spage=117927&rft.epage=117927&rft.eissn=1095-9572%20(Electronic)%201053-8119%20(Linking)&rft.issn=1095-9572%20(Electronic)%201053-8119%20(Linking)&rft.au=ATTYE,%20Arnaud&RENARD,%20Felix&BACIU,%20Monica&ROGER,%20Elise&LAMALLE,%20Laurent&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée