EpidemiOptim: a Toolbox for the Optimization of Control Policies in Epidemiological Models
dc.rights.license | open | en_US |
dc.contributor.author | COLAS, Cedric | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | HEJBLUM, Boris
ORCID: 0000-0003-0646-452X IDREF: 189970316 | |
hal.structure.identifier | Groupe de Recherche en Economie Théorique et Appliquée [GREThA] | |
dc.contributor.author | ROUILLON, Sebastien
IDREF: 149491913 | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | THIEBAUT, Rodolphe | |
dc.contributor.author | OUDEYER, Pierre-Yves | |
dc.contributor.author | MOULIN-FRIER, Clement | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | PRAGUE, Melanie | |
dc.date.accessioned | 2021-05-07T12:28:45Z | |
dc.date.available | 2021-05-07T12:28:45Z | |
dc.date.created | 2020 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/27206 | |
dc.description.abstractEn | Modelling the dynamics of epidemics helps proposing control strategies based on phar-maceutical and non-pharmaceutical interventions (contact limitation, lock down, vaccina-tion, etc). Hand-designing such strategies is not trivial because of the number of pos-sible interventions and the difficulty to predict long-term effects. This task can be castas an optimization problem where state-of-the-art machine learning algorithms such asdeep reinforcement learning, might bring significant value. However, the specificity ofeach domain – epidemic modelling or solving optimization problem – requires strong col-laborations between researchers from different fields of expertise. This is why we intro-duce EpidemiOptim, a Python toolbox that facilitates collaborations between researchersin epidemiology and optimization. EpidemiOptim turns epidemiological models and costfunctions into optimization problems via a standard interface commonly used by optimiza-tion practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learningwith deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already im-plemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamicalon-off lock-down control under the optimization of death toll and economic recess using aSusceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOp-tim and its interactive visualization platform in Jupyter notebooks, epidemiologists, op-timization practitioners and others (e.g. economists) can easily compare epidemiologicalmodels, costs functions and optimization algorithms to address important choices to bemade by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. | |
dc.language.iso | EN | en_US |
dc.title.en | EpidemiOptim: a Toolbox for the Optimization of Control Policies in Epidemiological Models | |
dc.type | Document de travail - Pré-publication | en_US |
dc.subject.hal | Informatique [cs]/Apprentissage [cs.LG] | en_US |
dc.subject.hal | Informatique [cs]/Intelligence artificielle [cs.AI] | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM] | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | INSERM | en_US |
bordeaux.team | SISTM | en_US |
bordeaux.team | SISTM_BPH | |
bordeaux.import.source | hal | |
hal.identifier | hal-03099898 | |
hal.version | 1 | |
hal.export | false | |
workflow.import.source | hal | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=COLAS,%20Cedric&HEJBLUM,%20Boris&ROUILLON,%20Sebastien&THIEBAUT,%20Rodolphe&OUDEYER,%20Pierre-Yves&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |