Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCLAIRON, Quentin
dc.contributor.authorHENDERSON, Robin
dc.contributor.authorYOUNG, Nicholas
dc.contributor.authorWILSON, Emma
dc.contributor.authorTAYLOR, C. James
dc.date.accessioned2021-05-07T08:17:19Z
dc.date.available2021-05-07T08:17:19Z
dc.date.issued2020
dc.identifier.issn0006-341Xen_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/27185
dc.description.abstractEnA control theory perspective on determination of optimal dynamic treatment regimes is considered. The aim is to adapt statistical methodology that has been developed for medical or other biostatistical applications to incorporate powerful control techniques that have been designed for engineering or other technological problems. Data tend to be sparse and noisy in the biostatistical area and interest has tended to be in statistical inference for treatment effects. In engineering fields, experimental data can be more easily obtained and reproduced and interest is more often in performance and stability of proposed controllers rather than modeling and inference per se. We propose that modeling and estimation should be based on standard statistical techniques but subsequent treatment policy should be obtained from robust control. To bring focus, we concentrate on A‐learning methodology as developed in the biostatistical literature and 𝐻∞‐synthesis from control theory. Simulations and two applications demonstrate robustness of the 𝐻∞ strategy compared to standard A‐learning in the presence of model misspecification or measurement error.
dc.language.isoENen_US
dc.subject.enA‐learning
dc.subject.enAnticoagulation
dc.subject.enControl
dc.subject.en𝐻∞ ‐synthesis
dc.subject.enMisspecification
dc.subject.enPersonalized medicine
dc.subject.enRobustness
dc.title.enAdaptive treatment and robust control
dc.typeArticle de revueen_US
dc.identifier.doi10.1111/biom.13268en_US
dc.subject.halMathématiques [math]/Statistiques [math.ST]en_US
dc.subject.halInformatique [cs]/Bio-informatique [q-bio.QM]en_US
dc.identifier.pubmed32249926en_US
bordeaux.journalBiometricsen_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03152210
hal.version1
hal.exportfalse
workflow.import.sourcehal
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biometrics&rft.date=2020&rft.eissn=0006-341X&rft.issn=0006-341X&rft.au=CLAIRON,%20Quentin&HENDERSON,%20Robin&YOUNG,%20Nicholas&WILSON,%20Emma&TAYLOR,%20C.%20James&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem