Afficher la notice abrégée

dc.rights.licenseembargoen_US
hal.structure.identifierPhysikalisch-Technische Bundesanstalt [Berlin] [PTB]
dc.contributor.authorWELLS, James
hal.structure.identifierInstituto IMDEA Nanociencia [Madrid]
hal.structure.identifierUniversidad de Cádiz = University of Cádiz [UCA]
dc.contributor.authorORTEGA, Daniel
hal.structure.identifierPhysikalisch-Technische Bundesanstalt [Berlin] [PTB]
dc.contributor.authorSTEINHOFF, Uwe
hal.structure.identifierTechnische Universität Ilmenau [TU ]
dc.contributor.authorDUTZ, Silvio
hal.structure.identifierUniversidad de Navarra [Pamplona] [UNAV]
dc.contributor.authorGARAIO, Eneko
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorSANDRE, Olivier
hal.structure.identifierInstituto de Ciencia de Materiales de Aragón [Saragoza, España] [ICMA-CSIC]
dc.contributor.authorNATIVIDAD, Eva
dc.contributor.authorCRUZ, Maria M
hal.structure.identifierDipartimento di Fisica = Department of Physics [Univ Pavia] [UNIPV]
dc.contributor.authorBRERO, Francesca
hal.structure.identifierDepartment of Medical Physics and Biomedical Engineering [UCL]
dc.contributor.authorSOUTHERN, Paul
hal.structure.identifierDepartment of Medical Physics and Biomedical Engineering [UCL]
dc.contributor.authorPANKHURST, Quentin A.
hal.structure.identifierCentre de Physique du Globe [Dourbes]
dc.contributor.authorSPASSOV, Simo
hal.structure.identifierCOST Office
dc.contributor.authorRADIOMAG, Consortium
dc.date.accessioned2021-03-06T15:14:01Z
dc.date.available2021-03-06T15:14:01Z
dc.date.issued2021-03
dc.identifier.otherhttps://doi.org/10.5281/zenodo.4281154en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/26447
dc.description.abstractEnThe localized heating of magnetic nanoparticles (MNPs) via the application of time-varying magnetic fields – a process known as magnetic field hyperthermia (MFH) – can greatly enhance existing options for cancer treatment; but for broad clinical uptake its optimization, reproducibility and safety must be comprehensively proven. As part of this effort, the quantification of MNP heating – characterized by the specific loss power (SLP), measured in W/g, or by the intrinsic loss power (ILP), in nHm2/kg – is frequently reported. However, in SLP/ILP measurements to date, the apparatus, the analysis techniques and the field conditions used by different researchers have varied greatly, leading to questions as to the reproducibility of the measurements. To address this, we report here on an interlaboratory study (across N = 21 European sites) of calorimetry measurements that constitutes a snapshot of the current state-of-the-art within the MFH community. The data show that although there is very good intralaboratory repeatability, the overall interlaboratory measurement accuracy is poor, with the consolidated ILP data having standard deviations on the mean of ca. ± 30% to ± 40%. There is a strong systematic component to the uncertainties, and a clear rank correlation between the measuring laboratory and the ILP. Both of these are indications of a current lack of normalization in this field. A number of possible sources of systematic uncertainties are identified, and means determined to alleviate or minimize them. However, no single dominant factor was identified, and significant work remains to ascertain and remove the remaining uncertainty sources. We conclude that the study reveals a current lack of harmonization in MFH characterization of MNPs, and highlights the growing need for standardized, quantitative characterization techniques for this emerging medical technology.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectthermal ablation
dc.subjectquality assurance
dc.subjectthermal dose
dc.subject.enthermal dosimetry
dc.title.enChallenges and Recommendations for Magnetic Hyperthermia Characterization Measurements
dc.typeArticle de revueen_US
dc.identifier.doi10.1080/02656736.2021.1892837en_US
dc.subject.halPhysique [physics]en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Thermique [physics.class-ph]en_US
dc.description.sponsorshipEuropeMultifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapyen_US
bordeaux.journalInternational Journal of Hyperthermiaen_US
bordeaux.volume38en_US
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressouien_US
hal.identifierhal-03161401
hal.version1
hal.date.transferred2021-03-06T15:14:06Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Hyperthermia&rft.date=2021-03&rft.volume=38&rft.au=WELLS,%20James&ORTEGA,%20Daniel&STEINHOFF,%20Uwe&DUTZ,%20Silvio&GARAIO,%20Eneko&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée