Afficher la notice abrégée

dc.rights.licenseembargoen_US
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorCHAPOULY, Candice
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorHOLLIER, Pierre-Louis
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorGUIMBAL, Sarah
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorCORNUAULT, Lauriane
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorGADEAU, Alain-Pierre
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorRENAULT, Marie-Ange
dc.date.accessioned2021-03-04T11:16:31Z
dc.date.available2021-03-04T11:16:31Z
dc.date.issued2020-01-01
dc.identifier.issn1524-4636en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/26436
dc.description.abstractEnEvidences accumulated within the past decades identified hedgehog signaling as a new regulator of endothelium integrity. More specifically, we recently identified Dhh (desert hedgehog) as a downstream effector of Klf2 (Kruppel-like factor 2) in endothelial cells (ECs). The purpose of this study is to investigate whether hedgehog coreceptors Gas1 (growth arrest-specific 1) and Cdon (cell adhesion molecule-related/downregulated by oncogenes) may be used as therapeutic targets to modulate Dhh signaling in ECs. Approach and Results: We demonstrated that both Gas1 and Cdon are expressed in adult ECs and relied on either siRNAs- or EC-specific conditional knockout mice to investigate their role. We found that Gas1 deficiency mainly phenocopies Dhh deficiency especially by inducing VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) overexpression while Cdon deficiency has opposite effects by promoting endothelial junction integrity. At a molecular level, Cdon prevents Dhh binding to Ptch1 (patched-1) and thus acts as a decoy receptor for Dhh, while Gas1 promotes Dhh binding to Smo (smoothened) and as a result potentiates Dhh effects. Since Cdon is upregulated in ECs treated by inflammatory cytokines, including TNF (tumor necrosis factor)-α and Il (interleukin)-1β, we then tested whether Cdon inhibition would promote endothelium integrity in acute inflammatory conditions and found that both fibrinogen and IgG extravasation were decreased in association with an increased Cdh5 (cadherin-5) expression in the brain cortex of EC-specific Cdon knockout mice administered locally with Il-1β. Altogether, these results demonstrate that Gas1 is a positive regulator of Dhh in ECs while Cdon is a negative regulator. Interestingly, Cdon blocking molecules may then be used to promote endothelium integrity, at least in inflammatory conditions.
dc.language.isoENen_US
dc.subject.enAnimals
dc.subject.enAntigens
dc.subject.enCD
dc.subject.enBlood-Brain Barrier
dc.subject.enCadherins
dc.subject.enCell Adhesion Molecules
dc.subject.enCell Cycle Proteins
dc.subject.enCells
dc.subject.enCultured
dc.subject.enCorneal Neovascularization
dc.subject.enDisease Models
dc.subject.enAnimal
dc.subject.enEndothelial Cells
dc.subject.enEndothelium
dc.subject.enCorneal
dc.subject.enFemale
dc.subject.enGPI-Linked Proteins
dc.subject.enHedgehog Proteins
dc.subject.enHumans
dc.subject.enInflammation
dc.subject.enMale
dc.subject.enMice
dc.subject.en129 Strain
dc.subject.enMice
dc.subject.enInbred C57BL
dc.subject.enMice
dc.subject.enKnockout
dc.subject.enPatched-1 Receptor
dc.subject.enSignal Transduction
dc.subject.enSmoothened Receptor
dc.title.enDesert Hedgehog-Driven Endothelium Integrity Is Enhanced by Gas1 (Growth Arrest-Specific 1) but Negatively Regulated by Cdon (Cell Adhesion Molecule-Related/Downregulated by Oncogenes).
dc.title.alternativeArterioscler Thromb Vasc Biolen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1161/ATVBAHA.120.314441en_US
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaireen_US
dc.identifier.pubmed33028094en_US
bordeaux.journalArteriosclerosis, Thrombosis, and Vascular Biologyen_US
bordeaux.pagee336-e349en_US
bordeaux.volume40en_US
bordeaux.hal.laboratoriesBiologie des maladies cardiovasculaires - U1034en_US
bordeaux.issue12en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcepubmed
hal.exportfalse
workflow.import.sourcepubmed
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Arteriosclerosis,%20Thrombosis,%20and%20Vascular%20Biology&rft.date=2020-01-01&rft.volume=40&rft.issue=12&rft.spage=e336-e349&rft.epage=e336-e349&rft.eissn=1524-4636&rft.issn=1524-4636&rft.au=CHAPOULY,%20Candice&HOLLIER,%20Pierre-Louis&GUIMBAL,%20Sarah&CORNUAULT,%20Lauriane&GADEAU,%20Alain-Pierre&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée