Mostrar el registro sencillo del ítem
Excess cumulative incidence estimation for matched cohort survival studies
dc.rights.license | open | en_US |
dc.contributor.author | BOSCHINI, C. | |
dc.contributor.author | ANDERSEN, K. K. | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | JACQMIN-GADDA, Helene | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | JOLY, Pierre | |
dc.contributor.author | SCHEIKE, T. H. | |
dc.date.accessioned | 2021-01-18T10:36:48Z | |
dc.date.available | 2021-01-18T10:36:48Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1097-0258 (Electronic) 0277-6715 (Linking) | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/25810 | |
dc.description.abstractEn | We suggest a regression approach to estimate the excess cumulative incidence function (CIF) when matched data are available. In a competing risk setting, we define the excess risk as the difference between the CIF in the exposed group and the background CIF observed in the unexposed group. We show that the excess risk can be estimated through an extended binomial regression model that actively uses the matched structure of the data, avoiding further estimation of both the exposed and the unexposed CIFs. The method naturally deals with two time scales, age and time since exposure and simplifies how to deal with the left truncation on the age time‐scale. The model makes it easy to predict individual excess risk scenarios and allows for a direct interpretation of the covariate effects on the cumulative incidence scale. After introducing the model and some theory to justify the approach, we show via simulations that our model works well in practice. We conclude by applying the excess risk model to data from the ALiCCS study to investigate the excess risk of late events in childhood cancer survivors. | |
dc.language.iso | EN | en_US |
dc.subject | Biostatistics | |
dc.title.en | Excess cumulative incidence estimation for matched cohort survival studies | |
dc.title.alternative | Stat Med | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1002/sim.8561 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
dc.identifier.pubmed | 32501587 | en_US |
bordeaux.journal | Statistics in Medicine | en_US |
bordeaux.page | 2606-2620 | en_US |
bordeaux.volume | 39 | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.issue | 20 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.team | BIOSTAT_BPH | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03166159 | |
hal.version | 1 | |
hal.date.transferred | 2021-03-11T09:23:48Z | |
hal.export | true | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20in%20Medicine&rft.date=2020&rft.volume=39&rft.issue=20&rft.spage=2606-2620&rft.epage=2606-2620&rft.eissn=1097-0258%20(Electronic)%200277-6715%20(Linking)&rft.issn=1097-0258%20(Electronic)%200277-6715%20(Linking)&rft.au=BOSCHINI,%20C.&ANDERSEN,%20K.%20K.&JACQMIN-GADDA,%20Helene&JOLY,%20Pierre&SCHEIKE,%20T.%20H.&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |