Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCLAIRON, Quentin
dc.contributor.authorBRUNEL, Nicolas J. B.
dc.date.accessioned2021-01-11T09:21:40Z
dc.date.available2021-01-11T09:21:40Z
dc.date.issued2018
dc.identifier.issn0162-1459 1537-274Xen_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/23747
dc.description.abstractEnOrdinary differential equations (ODE) are routinely calibrated on real data for estimating unknown parameters or for reverse-engineering. Nevertheless, standard statistical techniques can give disappointing results because of the complex relationship between parameters and states, which makes the corresponding estimation problem ill-posed. Moreover, ODE are mechanistic models that are prone to modeling errors, whose influences on inference are often neglected during statistical analysis. We propose a regularized estimation framework, called Tracking, which consists in adding a perturbation (L-2 function) to the original ODE. This perturbation facilitates data fitting and represents also possible model misspecifications, so that parameter estimation is done by solving a trade-off between data fidelity and model fidelity. We show that the underlying optimization problem is an optimal control problem that can be solved by the Pontryagin maximum principle for general nonlinear and partially observed ODE. The same methodology can be used for the joint estimation of finite and time-varying parameters. We show, in the case of a well-specified parametric model that our estimator is consistent and reaches the root-n rate. In addition, numerical experiments considering various sources of model misspecifications shows that Tracking still furnishes accurate estimates. Finally, we consider semiparametric estimation on both simulated data and on a real data example. Supplementary materials for this article are available online.
dc.language.isoENen_US
dc.subject.enSISTM
dc.title.enOptimal Control and Additive Perturbations Help in Estimating Ill-Posed and Uncertain Dynamical Systems
dc.title.alternativeJournal of the American Statistical Associationen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1080/01621459.2017.1319841en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.journalJ. Am. Stat. Assoc.en_US
bordeaux.page1195-1209en_US
bordeaux.volume113en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue523en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03105489
hal.version1
hal.date.transferred2021-01-11T09:21:45Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=J.%20Am.%20Stat.%20Assoc.&rft.date=2018&rft.volume=113&rft.issue=523&rft.spage=1195-1209&rft.epage=1195-1209&rft.eissn=0162-1459%201537-274X&rft.issn=0162-1459%201537-274X&rft.au=CLAIRON,%20Quentin&BRUNEL,%20Nicolas%20J.%20B.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée