Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorMADAOUI, Said
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorSABATIER, Jocelyn
IDREF: 05934976X
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorVINASSA, Jean-Michel
IDREF: 078898064
dc.contributor.authorGUILLEMARD, Franck
dc.date.accessioned2025-12-15T08:18:38Z
dc.date.available2025-12-15T08:18:38Z
dc.date.issued2025-09
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/207964
dc.description.abstractEnThis study addresses the critical challenge of fast-charging lithium-ion batteries for electric vehicles while maintaining safety and longevity. Two optimized charging profiles (MSCC and spline-based) are developed to minimize charging time while respecting voltage and temperature constraints. The research utilizes both cell and battery module models to solve this optimization problem. A key innovation is the investigation of dual-side cooling, employing both top and bottom cooling plates simultaneously. This novel thermal management approach significantly reduces thermal gradients and promotes uniform temperature distribution across battery cells, enhancing the overall charging process. The study also explores modifications to cell internal connections to improve performance. The optimized cooling configuration demonstrates substantial improvements, reducing charging time by 30 % compared to the test bench configuration and decreasing thermal gradients by 63 % relative to high-convection bottom cooling. These results underscore the importance of advanced thermal management in fast-charging applications. Additionally, the research proposes an implementation solution to address discrepancies between the model used for profile optimization and the actual battery characteristics. This adaptive approach ensures the optimal charging profiles remain effective when applied to real-world systems. By integrating optimized charging profiles, efficient cooling systems, and sophisticated modelling techniques, this study provides valuable insights for achieving faster and safer charging of lithium-ion batteries. The findings have significant implications for advancing electric vehicle technologies and addressing key barriers to widespread EV adoption.
dc.language.isoENen_US
dc.title.enResearch and implementation of a fast-charging methodology for lithium-ion batteries under bottom and dual cooling configurations
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.est.2025.117285en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalJournal of Energy Storageen_US
bordeaux.page117285en_US
bordeaux.volume130en_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.teamRELIABILITYen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcecrossref
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Energy%20Storage&rft.date=2025-09&rft.volume=130&rft.spage=117285&rft.epage=117285&rft.eissn=2352-152X&rft.issn=2352-152X&rft.au=MADAOUI,%20Said&SABATIER,%20Jocelyn&VINASSA,%20Jean-Michel&GUILLEMARD,%20Franck&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée