Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorKUMAR, Amit
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorPRAKASHA, Bharath Somalapura
dc.contributor.authorKUMAR, Mahesh
dc.date.accessioned2025-09-15T10:13:56Z
dc.date.available2025-09-15T10:13:56Z
dc.date.issued2025-08-07
dc.identifier.issn2379-3694en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/207616
dc.description.abstractEnIn this study, we report a power-efficient and highly selective H2S gas sensing platform based on a pulse-modulated sensor of nanostone-structured CuO thin films. Nanostone morphology chemiresistive sensors exposed to H2S at moderate temperatures (∼150 °C) undergo irreversible surface transformations, converting the active CuO phase into highly conductive CuS or Cu2S, which results in unstable current output and loss of sensing capability. To address this, we introduce a dynamic pulse modulation technique that cyclically toggles the sensing temperature ON and OFF at 200 °C, enabling in situ regeneration of CuO from CuS without external thermal treatment. This effect is attributed to enhanced sulfur desorption kinetics and reactivation of surface oxygen during cooling cycles, which collectively disrupt the thermodynamic equilibrium that stabilizes Cu–S bonds under continuous heating. Morphological features, such as a nanostone-like surface texture and vertically aligned columnar grain architecture, further contribute to rapid gas diffusion, increased surface reactivity, and improved charge transport pathways. Experiments reveal that pulse modulation decrease reaction and recovery time, increase long-term stability, and material reversibility, even at higher H2S concentrations where irreversible behavior is typically observed.
dc.language.isoENen_US
dc.subject.enMetal oxides
dc.subject.enH2S sensor
dc.subject.enNanostone morphology
dc.subject.enPulse modulation
dc.subject.enSulfurization
dc.subject.enDesulfurization
dc.title.enTemperature Pulse Driven Sulfurization and Desulfurization of CuO for Enhanced H2S Quantification
dc.typeArticle de revueen_US
dc.identifier.doi10.1021/acssensors.5c01207en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalACS Sensorsen_US
bordeaux.page5862-5871en_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.issue8en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.teamORGANICS ELECTRONICS - PRIMSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcecrossref
hal.identifierhal-05258369
hal.version1
hal.date.transferred2025-09-15T10:13:58Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Sensors&rft.date=2025-08-07&rft.volume=10&rft.issue=8&rft.spage=5862-5871&rft.epage=5862-5871&rft.eissn=2379-3694&rft.issn=2379-3694&rft.au=KUMAR,%20Amit&PRAKASHA,%20Bharath%20Somalapura&KUMAR,%20Mahesh&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record