Mostrar el registro sencillo del ítem
Comparative Study of Machine Learning Models for the Detection of Abusive Messages: Case of Wolof-French Codes Mixing Data
dc.rights.license | open | en_US |
dc.contributor.author | NDAO, I. | |
dc.contributor.author | DRAMÉ, K. | |
dc.contributor.author | SAMBE, G. | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | DIALLO, Gayo
ORCID: 0000-0002-9799-9484 IDREF: 112800084 | |
dc.date.accessioned | 2025-07-11T08:34:07Z | |
dc.date.available | 2025-07-11T08:34:07Z | |
dc.date.issued | 2025-04-21 | |
dc.date.conference | 2024-07-03 | |
dc.identifier.isbn | 978-3-031-86493-3 | en_US |
dc.identifier.issn | 1867-8211 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/207313 | |
dc.description.abstractEn | This paper presents a comparative study of machine learning models for detecting abusive messages, focusing on code-mixed data in Wolof and French languages. With the increasing use of digital platforms, there has been a surge in derogatory comments, necessitating effective detection strategies. The study introduces a meticulously annotated dataset of 2022 Twitter tweets, manually classified as abusive or not. Extensive experiments are conducted with various machine learning algorithms, including deep learning, with a focus on comparing their performance on the test dataset. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2025. | |
dc.language.iso | EN | en_US |
dc.title.en | Comparative Study of Machine Learning Models for the Detection of Abusive Messages: Case of Wolof-French Codes Mixing Data | |
dc.type | Communication dans un congrès | en_US |
dc.identifier.doi | 10.1007/978-3-031-86493-3_20 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
bordeaux.page | 252-263 | en_US |
bordeaux.volume | 610 | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | INSERM | en_US |
bordeaux.conference.title | EAI INTERSOL 2024 - 7th EAI International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas | en_US |
bordeaux.country | sn | en_US |
bordeaux.title.proceeding | Innovations and Interdisciplinary Solutions for Underserved Areas. 7th International Conference, InterSol 2024, Dakar, Senegal, July 3–4, 2024, Proceedings | en_US |
bordeaux.team | AHEAD_BPH | en_US |
bordeaux.conference.city | Dakar | en_US |
hal.identifier | hal-05157712 | |
hal.version | 1 | |
hal.date.transferred | 2025-07-11T08:34:10Z | |
hal.proceedings | oui | en_US |
hal.conference.end | 2024-07-04 | |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | true | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2025-04-21&rft.volume=610&rft.spage=252-263&rft.epage=252-263&rft.eissn=1867-8211&rft.issn=1867-8211&rft.au=NDAO,%20I.&DRAM%C3%89,%20K.&SAMBE,%20G.&DIALLO,%20Gayo&rft.isbn=978-3-031-86493-3&rft.genre=unknown |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |