Mostrar el registro sencillo del ítem
Artificial intelligence: the human response to approach the complexity of big data in biology
hal.structure.identifier | University of Arizona | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
dc.contributor.author | MELANDRI, Giovanni | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
dc.contributor.author | R-RADOHERY, Georges | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
dc.contributor.author | BEAUMONT, Chloé | |
hal.structure.identifier | International Centre for Theoretical Sciences [TIFR] [ICTS-TIFR] | |
dc.contributor.author | DE CRIPAN, Sara | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
dc.contributor.author | MULLER, Coralie | |
hal.structure.identifier | Eurecat - Centro Tecnológico de Catalunya | |
dc.contributor.author | PIRAS, Luca | |
hal.structure.identifier | Universidade do Minho = University of Minho [Braga] | |
dc.contributor.author | PEREIRA, Maria | |
hal.structure.identifier | Universidade do Minho = University of Minho [Braga] | |
dc.contributor.author | SALVADOR, Andreia | |
hal.structure.identifier | International Centre for Theoretical Sciences [TIFR] [ICTS-TIFR] | |
dc.contributor.author | DOMINGO-ALMENARA, Xavier | |
hal.structure.identifier | Cluster of Excellence on Plant Sciences [CEPLAS] | |
dc.contributor.author | BOLGER, Marie | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
hal.structure.identifier | Plateforme Bordeaux Metabolome | |
dc.contributor.author | COLOMBIÉ, Sophie | |
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
hal.structure.identifier | Plateforme Bordeaux Metabolome | |
dc.contributor.author | PRIGENT, Sylvain | |
hal.structure.identifier | Eurecat - Centro Tecnológico de Catalunya | |
dc.contributor.author | ARECHEDERRA, Biotza | |
hal.structure.identifier | Eurecat - Centro Tecnológico de Catalunya | |
dc.contributor.author | CANELA, Nuria | |
hal.structure.identifier | Université de Bordeaux [UB] | |
hal.structure.identifier | Plateforme Bordeaux Metabolome | |
dc.contributor.author | PÉTRIACQ, Pierre | |
dc.date.accessioned | 2025-06-19T02:06:52Z | |
dc.date.available | 2025-06-19T02:06:52Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/206966 | |
dc.description.abstractEn | <div><p>Since the late 2010s, artificial intelligence (AI), encompassing machine learning and propelled by deep learning, has transformed life science resear c h. It has become a crucial tool for ad v ancing the computational anal ysis of biological pr ocesses, the discov er y of natural products, and the study of ecosystem dynamics. This re vie w explores how the rapid increase in high-throughput omics data acquisition has dri v en the need for AI-based analysis in life sciences, with a particular focus on plant sciences, animal sciences, and microbiology. We highlight the role of omics-based predictive analytics in systems biology and innov ati v e AI-based anal ytical approaches for gaining deeper insights into comple x biolo gical systems. F inally, w e discuss the importance of FAIR (finda b le, accessib le, inter opera b le, r eusa b le) principles for omics data, as well as the future challenges and opportunities presented by the increasing use of AI in life sciences.</p></div> | |
dc.description.sponsorship | Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation - ANR-11-INBS-0010 | |
dc.description.sponsorship | Next generation metabolomics and fluxomics, from population to single cells | |
dc.description.sponsorship | MetaboHUB National Infrastructure of metabolomics and fluxomics | |
dc.description.sponsorship | Centre français de phénomique végétale - ANR-11-INBS-0012 | |
dc.language.iso | en | |
dc.publisher | Oxford Univ Press | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | artificial intelligence | |
dc.subject.en | machine learning | |
dc.subject.en | deep learning | |
dc.subject.en | omics | |
dc.subject.en | life science | |
dc.subject.en | biology | |
dc.title.en | Artificial intelligence: the human response to approach the complexity of big data in biology | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1093/gigascience/giaf057 | |
dc.subject.hal | Informatique [cs]/Intelligence artificielle [cs.AI] | |
bordeaux.journal | GigaScience | |
bordeaux.page | giaf057 | |
bordeaux.volume | 14 | |
bordeaux.hal.laboratories | Biologie du Fruit & Pathologie (BFP) - UMR 1332 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-05118620 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-05118620v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=GigaScience&rft.date=2025&rft.volume=14&rft.spage=giaf057&rft.epage=giaf057&rft.au=MELANDRI,%20Giovanni&R-RADOHERY,%20Georges&BEAUMONT,%20Chlo%C3%A9&DE%20CRIPAN,%20Sara&MULLER,%20Coralie&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |