Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierCentre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
dc.contributor.authorBOUZID, Amel Imene Hadj
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorDENIS DE SENNEVILLE, Baudouin
IDREF: 101018363
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorBALDACCI, Fabien
IDREF: 142618446
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorDESBARATS, Pascal
IDREF: 060726806
hal.structure.identifierCentre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
dc.contributor.authorBERGER, Patrick
ORCID: 0000-0003-4702-0343
IDREF: 060717998
hal.structure.identifierCentre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
dc.contributor.authorBENLALA, Ilyes
hal.structure.identifierCentre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
dc.contributor.authorDOURNES, Gaël
dc.date.accessioned2025-06-18T08:56:15Z
dc.date.available2025-06-18T08:56:15Z
dc.date.issued2024
dc.date.conference2024-05-27
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206944
dc.description.abstractEnThis research embarked on a comparative exploration of the holistic segmentation capabilities of Convolutional Neural Networks (CNNs) in both 2D and 3D formats, focusing on cystic fibrosis (CF) lesions. The study utilized data from two CF reference centers, covering five major CF structural changes. Initially, it compared the 2D and 3D models, highlighting the 3D model's superior capability in capturing complex features like mucus plugs and consolidations. To improve the 2D model's performance, a loss adapted to fine structures segmentation was implemented and evaluated, significantly enhancing its accuracy, though not surpassing the 3D model's performance. The models underwent further validation through external evaluation against pulmonary function tests (PFTs), confirming the robustness of the findings. Moreover, this study went beyond comparing metrics; it also included comprehensive assessments of the models' interpretability and reliability, providing valuable insights for their clinical application.
dc.language.isoENen_US
dc.publisherIEEEen_US
dc.subject.enImage and Video Processing (eess.IV)
dc.subject.enComputer Vision and Pattern Recognition (cs.CV)
dc.subject.enMachine Learning (cs.LG)
dc.subject.enFOS: Electrical engineering
dc.subject.enelectronic engineering
dc.subject.eninformation engineering
dc.subject.enFOS: Computer and information sciences
dc.title.enCT Evaluation of 2D and 3D Holistic Deep Learning Methods for the Volumetric Segmentation of Airway Lesions
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.1109/ISBI56570.2024.10635201en_US
dc.subject.halInformatique [cs]en_US
bordeaux.page1-5en_US
bordeaux.hal.laboratoriesCentre de Recherche Cardio-Thoracique de Bordeaux (CRCTB) - U1045en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.conference.titleISBI 2024 - 21st IEEE International Symposium on Biomedical Imagingen_US
bordeaux.conference.cityAthènesen_US
bordeaux.import.sourcehal
hal.identifierhal-04793701
hal.version1
hal.invitednonen_US
hal.proceedingsnonen_US
hal.conference.end2024-05-30
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2024&rft.spage=1-5&rft.epage=1-5&rft.au=BOUZID,%20Amel%20Imene%20Hadj&DENIS%20DE%20SENNEVILLE,%20Baudouin&BALDACCI,%20Fabien&DESBARATS,%20Pascal&BERGER,%20Patrick&rft.genre=unknown


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record