Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
dc.contributor.authorGRIVEL, Eric
IDREF: 151378606
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCentre Inria de l'Université de Bordeaux
hal.structure.identifierMéthodes avancées d’apprentissage statistique et de contrôle [ASTRAL]
dc.contributor.authorLEGRAND, Pierrick
IDREF: 094614032
hal.structure.identifierThales AVS France SAS
dc.contributor.authorBERTHELOT, Bastien
dc.date.accessioned2025-05-23T09:14:29Z
dc.date.available2025-05-23T09:14:29Z
dc.date.issued2025-05-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206696
dc.description.abstractEnIn this paper, we propose to analyze the behavior of the entropy rate (ER) when applied to a signal and its coarse-grained versions. The “multiscale entropy rate” (MSER) is deduced by storing in a vector the resulting ERs. Our contribution consists in studying the MSER calculated on different stochastic processes. When dealing with Gaussian complex or real moving average (MA) processes or autoregressive (AR) processes, which can be seen as the filtering of a white Gaussian driving process, the MSER depends on the variances of the driving processes of the corresponding minimum-phase ARMA process at each scale. More particularly, we derive the analytical expression of the MSER for -order MA or AR processes using different approaches. This study allows us to better understand what each scale brings in and to describe the behavior of the MSER for these types of processes. We also show that there is a mapping between the stochastic-process parameters and the ER computed at different scales. Finally, we show that the multiscale procedure is not relevant for a sum of complex exponentials disturbed by an additive white Gaussian noise.
dc.language.isoENen_US
dc.subject.enMultiscale entropy
dc.subject.enEntropy rates
dc.subject.enSum of complex exponentials
dc.subject.enAutoregressive with moving average processes
dc.title.enMultiscale entropy rates: a study on different stochastic processes
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.dsp.2025.105303en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalDigital Signal Processingen_US
bordeaux.hal.laboratoriesLaboratoire de l'intégration, du matériau au système [IMS]en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.teamSIGNAL AND IMAGE PROCESSINGen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-05081514
hal.version1
hal.date.transferred2025-05-23T09:14:32Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Digital%20Signal%20Processing&rft.date=2025-05-09&rft.au=GRIVEL,%20Eric&LEGRAND,%20Pierrick&BERTHELOT,%20Bastien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée