Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorBOUHAFA, N.
dc.contributor.authorSAKAROVITCH, C.
dc.contributor.authorLALAGUE, Laura
dc.contributor.authorGOULARD, F.
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorPRYET, Alexandre
dc.date.accessioned2025-04-25T09:40:31Z
dc.date.available2025-04-25T09:40:31Z
dc.date.issued2024-04-26
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206439
dc.description.abstractABSTRACT Accurate spring discharge modeling and prediction is crucial for water management, helping authorities optimize use, manage variability, and prepare for droughts. Developing reliable simulation and forecasting tools is essential for effective management of groundwater resources from karstic springs. Although hybrid modeling approaches have been explored in hydrology, their application to spring discharge modeling is underexplored. Previous studies have focused on conceptual/distributed or data-driven models separately, missing the potential advantages of combining them. This creates a research gap in exploring the benefits of hybrid models for spring discharge. This study developed a hybrid model combining a conceptual GR5J model with Random Forests to simulate spring discharge from Bordeaux's largest karst aquifer. Model performance was assessed through comparison with the individual GR5J, RF, and benchmark models (weekly average of observed values). The hybrid model outperformed all models. Evaluation using actual meteorological data found the hybrid model achieved the highest accuracy by reducing GR5J simulation errors by 22%. When considering meteorological uncertainty, the hybrid model outperformed the individual GR5J, RF and benchmark models by 11, 30 and 47% respectively. The study findings suggest combining conceptual and machine learning approaches can improve spring discharge simulations, opening promising opportunities for enhanced forecasting in karst aquifers.
dc.language.isoENen_US
dc.title.enHybrid modeling of karstic springs: Error correction of conceptual reservoir models with machine learning
dc.typeArticle de revueen_US
dc.identifier.doi10.2166/ws.2024.092en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalWater Supplyen_US
bordeaux.page1559-1573en_US
bordeaux.volume24en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcecrossref
hal.identifierhal-05046698
hal.version1
hal.date.transferred2025-04-25T09:40:33Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Water%20Supply&rft.date=2024-04-26&rft.volume=24&rft.issue=5&rft.spage=1559-1573&rft.epage=1559-1573&rft.au=BOUHAFA,%20N.&SAKAROVITCH,%20C.&LALAGUE,%20Laura&GOULARD,%20F.&PRYET,%20Alexandre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée