Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.contributor.authorTALBOT, Denis
dc.contributor.authorDIOP, Awa
dc.contributor.authorMESIDOR, Miceline
dc.contributor.authorCHIU, Yohann
dc.contributor.authorSIROIS, Caroline
dc.contributor.authorSPIEKER, Andrew J
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPARIENTE, Antoine
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorNOIZE, Pernelle
dc.contributor.authorSIMARD, Marc
dc.contributor.authorLUQUE FERNANDEZ, Miguel Angel
dc.contributor.authorSCHOMAKER, Michael
dc.contributor.authorFUJITA, Kenji
dc.contributor.authorGNJIDIC, Danijela
dc.contributor.authorSCHNITZER, Mireille E
dc.date.accessioned2025-04-23T07:31:57Z
dc.date.available2025-04-23T07:31:57Z
dc.date.issued2025-03-15
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206351
dc.description.abstractEnTargeted maximum likelihood estimation (TMLE) is an increasingly popular framework for the estimation of causal effects. It requires modeling both the exposure and outcome but is doubly robust in the sense that it is valid if at least one of these models is correctly specified. In addition, TMLE allows for flexible modeling of both the exposure and outcome with machine learning methods. This provides better control for measured confounders since the model specification automatically adapts to the data, instead of needing to be specified by the analyst a priori. Despite these methodological advantages, TMLE remains less popular than alternatives in part because of its less accessible theory and implementation. While some tutorials have been proposed, none address the case of a time-to-event outcome. This tutorial provides a detailed step-by-step explanation of the implementation of TMLE for estimating the effect of a point binary or multilevel exposure on a time-to-event outcome, modeled as counterfactual survival curves and causal hazard ratios. The tutorial also provides guidelines on how best to use TMLE in practice, including aspects related to study design, choice of covariates, controlling biases and use of machine learning. R-code is provided to illustrate each step using simulated data (https://github.com/detal9/SurvTMLE). To facilitate implementation, a general R function implementing TMLE with options to use machine learning is also provided. The method is illustrated in a real-data analysis concerning the effectiveness of statins for the prevention of a first cardiovascular disease among older adults in Québec, Canada, between 2013 and 2018. © 2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enCausal Inference
dc.subject.enDouble Robustness
dc.subject.enMachine Learning
dc.subject.enObservational Studies
dc.subject.enSurvival Analysis
dc.subject.enTargeted Maximum Likelihood Estimation
dc.title.enGuidelines and Best Practices for the Use of Targeted Maximum Likelihood and Machine Learning When Estimating Causal Effects of Exposures on Time-To-Event Outcomes
dc.title.alternativeStat Meden_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/sim.70034en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed40079648en_US
bordeaux.journalStatistics in Medicineen_US
bordeaux.pagee70034en_US
bordeaux.volume44en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue6en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDInternational Society for Pharmacoepidemiologyen_US
bordeaux.identifier.funderIDFonds de Recherche du Québec - Santéen_US
hal.identifierhal-05043327
hal.version1
hal.date.transferred2025-04-23T07:32:01Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20in%20Medicine&rft.date=2025-03-15&rft.volume=44&rft.issue=6&rft.spage=e70034&rft.epage=e70034&rft.eissn=1097-0258&rft.issn=1097-0258&rft.au=TALBOT,%20Denis&DIOP,%20Awa&MESIDOR,%20Miceline&CHIU,%20Yohann&SIROIS,%20Caroline&rft.genre=article


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem