Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorBROSSARD, Cyrielle
dc.contributor.authorGOETZ, Christophe
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCATOIRE, Pierre
dc.contributor.authorCIPOLAT, Lauriane
dc.contributor.authorGUYEUX, Christophe
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorGIL JARDINE, Cedric
dc.contributor.authorAKPLOGAN, Mahuna
dc.contributor.authorABENSUR VUILLAUME, Laure
dc.date.accessioned2025-04-14T09:51:32Z
dc.date.available2025-04-14T09:51:32Z
dc.date.issued2025-01-06
dc.identifier.issn1471-227xen_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206175
dc.description.abstractEnINTRODUCTION: Overcrowding in emergency departments (ED) is a major public health issue, leading to increased workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the admissions of patients in the ED. AIM: The main objective of this study was to build and test a prediction tool for ED admissions using artificial intelligence. METHODS: We performed a retrospective multicenter study in two French ED from January 1st, 2010 to December 31st, 2019.We tested several machine learning algorithms and compared the results. RESULTS: The arrival and departure times from the ED of 2 hospitals were collected from all consultations during the study period, then grouped into 87 600 one-hour slots. Through the development of two models (one for each location), we found that the XGBoost method with hyperparameter adaptations was the best, suggesting that the studied data could be predicted (mean absolute error) at 2.63 for Hospital 1 and 2.64 for Hospital 2). CONCLUSIONS: This study ran the construction and validation of a powerful tool for predicting ED admissions in 2 French ED. This type of tool should be integrated into the overall organization of an ED, to optimize the resources of healthcare professionals.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enArtificial intelligence
dc.subject.enEmergency department
dc.subject.enOvercrowding
dc.title.enPredicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study
dc.title.alternativeBMC Emerg Meden_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1186/s12873-024-01141-4en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed39762754en_US
bordeaux.journalBMC Emergency Medicineen_US
bordeaux.page3en_US
bordeaux.volume25en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.teamBIOSTAT_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-05033080
hal.version1
hal.date.transferred2025-04-14T09:51:36Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=BMC%20Emergency%20Medicine&rft.date=2025-01-06&rft.volume=25&rft.issue=1&rft.spage=3&rft.epage=3&rft.eissn=1471-227x&rft.issn=1471-227x&rft.au=BROSSARD,%20Cyrielle&GOETZ,%20Christophe&CATOIRE,%20Pierre&CIPOLAT,%20Lauriane&GUYEUX,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée