Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierEquipe Apprentissage [App - LITIS]
hal.structure.identifierTELLUX
dc.contributor.authorRAKOTONIRINA, Herbert
hal.structure.identifierEquipe Apprentissage [App - LITIS]
dc.contributor.authorHONEINE, Paul
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorATTEIA, Olivier
IDREF: 078590272
hal.structure.identifierTELLUX
dc.contributor.authorVAN EXEM, Antonin
dc.date.accessioned2025-04-07T09:39:15Z
dc.date.available2025-04-07T09:39:15Z
dc.date.issued2024-12
dc.identifier.issn2590-1974en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206015
dc.description.abstractEnIn geosciences, kriging is leading spatial interpolation, and co-kriging is the most commonly used method for accomplishing spatial interpolation of a target variable by incorporating information from a secondary variable. Co-kriging relies on the assumption of spatial stationarity, which may not hold true in all geospatial contexts, leading to potential inaccuracies in interpolation. The effectiveness of co-kriging can be compromised in areas with sparse data, impacting the reliability of interpolated results. Moreover, it can be resource-intensive when used for interpolation with a substantial volume of data, especially in the case of 3D interpolation. In this paper, we introduce a new method for spatial interpolation that considers two variables using a generative deep neural network. This approach utilizes a convolutional neural network with an encoder–decoder architecture, featuring a single encoder and two decoders to handle the two variables. Additionally, we introduce a loss function that facilitates the control over the relationships between the two variables. Traditional Deep Learning methods require prior training and labeled data, whereas the proposed approach eliminates this requirement and simplifies the interpolation process. In order to assess the performance of our method, we use two real-world datasets. The first one is a 2D dataset of total soil organic carbon combined with the Normalized Difference Vegetation Index. The second one is a 3D dataset that combines concentrations of Hydrocarbon and Fluoride obtained from hyperspectral analysis of soil cores with very limited number of boreholes. The experimental results demonstrate that the proposed method outperforms ordinary kriging and co-kriging, showing a significant improvement when both variables are used. We also demonstrate how the inclusion of the auxiliary variable serves as a means to mitigate the overfitting of the model.
dc.language.isoENen_US
dc.subject.enCo-kriging
dc.subject.enKriging
dc.subject.enDeep learning
dc.subject.enEnvironmental data
dc.subject.enSoil pollution
dc.subject.enSoil organic carbon
dc.subject.enHydrocarbon
dc.subject.enFluoride
dc.subject.enCo-kriging Kriging Deep Learning Environmental data Soil pollution Soil organic carbon Hydrocarbon Fluoride
dc.subject.enCo-kriging
dc.subject.enDeep Learning
dc.title.enA generative deep neural network as an alternative to co-kriging
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.acags.2024.100198en_US
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalApplied Computing and Geosciencesen_US
bordeaux.page100198en_US
bordeaux.volume24en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04722317
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Computing%20and%20Geosciences&rft.date=2024-12&rft.volume=24&rft.spage=100198&rft.epage=100198&rft.eissn=2590-1974&rft.issn=2590-1974&rft.au=RAKOTONIRINA,%20Herbert&HONEINE,%20Paul&ATTEIA,%20Olivier&VAN%20EXEM,%20Antonin&rft.genre=article


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem