Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.contributor.authorGAMBOA, Alvaro
hal.structure.identifierESTIA - Institute of technology [ESTIA]
dc.contributor.authorDONGO, Irvin
dc.contributor.authorAGUILERA, Ana
dc.contributor.authorBEGAZO, Rolinson
dc.date.accessioned2025-03-10T14:29:44Z
dc.date.available2025-03-10T14:29:44Z
dc.date.conference2024-08-12
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/205469
dc.description.abstractEnNowadays, the advancement of technology allows the use of social robots for various daily tasks such as therapies, teaching assistants, restaurant services, among others. Human-Robot Interaction (HRI) is under constant study due to the new capabilities that robots acquire thanks to their improved hardware (e.g., more joints). Robots receive information through sensors such as cameras and microphones and can thus modify their behavior and adapt to different situations. However, an exhaustive real-time analysis of data within the robot requires excessive computing power and energy usage, which are limited in social robots. In this context, we propose a lightweight Machine Learning model to balance accuracy and audio processing time to recognize the emotions of happiness, sadness, anger, and neutral in real-time, aiming to improve HRI. Additionally, an empirical analysis to identify the most relevant audio features for emotion recognition is presented. The objective is to generate a lighter and more appropriate model for the robot's hardware. Results show better accuracy by using the RAVDESS, IEMOCAP, and RAVDESS+IEMOCAP datasets and a recognition time around 1 second.
dc.language.isoENen_US
dc.publisherIEEEen_US
dc.subject.enEmotion
dc.subject.enMachine Learning
dc.subject.enSocial Robots
dc.subject.enSpeech Emotion Recognition
dc.title.enTowards Speech Emotion Recognition Applied to Social Robots
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.1109/clei64178.2024.10700306en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.page1-10en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.conference.title2024 L Latin American Computer Conference (CLEI)en_US
bordeaux.countrybren_US
bordeaux.title.proceedingIEEE Conference on Artificial Intelligence, CAI 2023. Proceedingsen_US
bordeaux.conference.cityBuenos Airesen_US
bordeaux.import.sourcecrossref
hal.identifierhal-04984981
hal.version1
hal.date.transferred2025-03-10T14:29:46Z
hal.proceedingsouien_US
hal.conference.end2024-08-16
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=1-10&rft.epage=1-10&rft.au=GAMBOA,%20Alvaro&DONGO,%20Irvin&AGUILERA,%20Ana&BEGAZO,%20Rolinson&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem