Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorCOLLIO, Juan
dc.contributor.authorAGUILERA, Ana
hal.structure.identifierESTIA - Institute of technology [ESTIA]
dc.contributor.authorDONGO, Irvin
dc.date.accessioned2025-03-10T14:27:09Z
dc.date.available2025-03-10T14:27:09Z
dc.date.issued2024-10
dc.identifier.issn2169-3536en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/205468
dc.description.abstractEnThe Semantic Web emerged in response to the unprecedented growth of information and data sharing on the Web. It consists of a set of technologies that enable the automatic (machine) management and processing of linked data across hundreds of distributed repositories. To connect and interlink data, the Semantic Web uses Resource Description Framework (RDF), which is a graph-based data model that simplifies the description of resources using triples (subject, predicate, object). The representation of data in RDF usually follows an ontology, a knowledge base model that dictates the relationships and characteristics of the linked data. Ontologies play an important role in the SemanticWeb and are a key component. However, ontologies might not be correct and, in some cases, might not be available. In general, ontologies are created manually by domain experts in collaboration with ontology engineers, which is a costly and errorprone task. In this study, we present a proposal to automatically generate ontologies from RDF datasets. We use summarization techniques to reduce triples and retain the most relevant ones. Subsequently, classes, datatype properties, object properties, as well as the domain and range of properties are identified for schema construction. In addition, an enrichment of the schema is performed by incorporating Object Property axioms. The result is the delivery of a serialized ontology document in OWL/XML format. Furthermore, we present an experimental evaluation of an RDF dataset of 16005 triples. Through application of our summarization technique the original dataset was decreased by 98%. The ontology was generated with a time of 148.73 seconds. Finally, 9 classes, 10 Object Properties, 6 Datatype Properties, and 4 different types of Object Property axioms were identified.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enRDF
dc.subject.enOWL
dc.subject.enOntology
dc.subject.enQuery SPARQL
dc.subject.enSummarization
dc.subject.enObject property axioms
dc.title.enToward an Enrichment of Ontologies Inferred From RDF Documents
dc.typeArticle de revueen_US
dc.identifier.doi10.1109/access.2024.3475388en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalIEEE Accessen_US
bordeaux.page148037-148056en_US
bordeaux.volume12en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcecrossref
hal.identifierhal-04984973
hal.version1
hal.date.transferred2025-03-10T14:27:11Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Access&rft.date=2024-10&rft.volume=12&rft.spage=148037-148056&rft.epage=148037-148056&rft.eissn=2169-3536&rft.issn=2169-3536&rft.au=COLLIO,%20Juan&AGUILERA,%20Ana&DONGO,%20Irvin&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée