Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorDJEDDI, Warith Eddine
dc.contributor.authorYAHIA, Sadok Ben
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDIALLO, Gayo
ORCID: 0000-0002-9799-9484
IDREF: 112800084
dc.date.accessioned2025-02-19T11:07:37Z
dc.date.available2025-02-19T11:07:37Z
dc.date.issued2025-01-03
dc.identifier.issn2998-4165en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/205020
dc.description.abstractEnMultiple objectives have emerged in tuning protein-protein interaction (PPI) networks, such as identifying cross-species network similarities and predicting protein complexes and functions. Despite the proliferation of tuning methodologies, challenges remain in balancing accuracy and efficiency. In this paper, we introduce GA2Vec, a novel approach for globally aligning multiple PPI networks using genetic algorithms in a many-to-many fashion. GA2Vec leverages vector embeddings of protein sequences from ProtBERT, ESM-2, and ProtT5-XL-UniRef50 to reconstruct weighted PPI networks, incorporating functional similarity through Gene Ontology (GO) term embeddings derived from the Anc2vec method. We employ four community detection algorithms to generate candidate clusters from the weighted graph, serving as initial solutions for the genetic algorithm. The genetic algorithm optimizes network alignment by refining these clusters using a fitness function based on similarity scores from pre-trained embeddings and GO terms, achieving a robust global network alignment. We demonstrate the effectiveness of our method through experiments on eukaryotic, prokaryotic, SARS-CoV, and virus-host biological networks. It achieves robust alignment between SARS-CoV-2 and SARS-CoV-1 PPI networks, balancing F1, cluster interaction quality (CIQ), internal cluster quality (ICQ), consistent clusters, and sensitivity, with scores reflecting its adaptability to diverse biological contexts.
dc.language.isoENen_US
dc.subject.enProtein Interaction
dc.subject.enProtein Sequence Embedding
dc.subject.enProtein Complexes
dc.subject.enGlobal Network Alignment
dc.subject.enGenetic Algorithm
dc.title.enOptimizing Global Network Alignment with a Genetic Algorithm: Leveraging Pre-trained Embeddings for Protein Sequences and Gene Ontology Terms
dc.title.alternativeIEEE Trans Comput Biol Bioinformen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1109/TCBBIO.2024.3498458en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.journalIEEE Transactions on Computational Biology and Bioinformaticsen_US
bordeaux.page1-14en_US
bordeaux.volume22en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04956403
hal.version1
hal.date.transferred2025-02-19T11:07:39Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Computational%20Biology%20and%20Bioinformatics&rft.date=2025-01-03&rft.volume=22&rft.issue=1&rft.spage=1-14&rft.epage=1-14&rft.eissn=2998-4165&rft.issn=2998-4165&rft.au=DJEDDI,%20Warith%20Eddine&YAHIA,%20Sadok%20Ben&DIALLO,%20Gayo&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record