Afficher la notice abrégée

hal.structure.identifierIT University of Copenhagen [ITU]
dc.contributor.authorDOONAN, James
hal.structure.identifierNorthwest German Forest Research Institute
dc.contributor.authorBUDDE, Katharina
hal.structure.identifierIT University of Copenhagen [ITU]
dc.contributor.authorKOSAWANG, Chatchai
hal.structure.identifierIT University of Copenhagen [ITU]
dc.contributor.authorLOBO, Albin
dc.contributor.authorVERBYLAITE, Rita
hal.structure.identifierNorwegian University of Science and Technology [NTNU]
dc.contributor.authorBREALEY, Jaelle
hal.structure.identifierNorwegian University of Science and Technology [NTNU]
dc.contributor.authorMARTIN, Michael
dc.contributor.authorPLIURA, Alfas
dc.contributor.authorTHOMAS, Kristina
hal.structure.identifierAustrian Research and Training Centre for Forests, Natural Hazards and Landscape [ BFW ]
dc.contributor.authorKONRAD, Heino
dc.contributor.authorSEEGMÜLLER, Stefan
hal.structure.identifierSkogforsk - Forestry Research Institute of Sweden
dc.contributor.authorLIZINIEWICZ, Mateusz
hal.structure.identifierSwedish University of Agricultural Sciences = Sveriges lantbruksuniversitet [SLU]
dc.contributor.authorCLEARY, Michelle
dc.contributor.authorNEMESIO‐GORRIZ, Miguel
dc.contributor.authorFUSSI, Barbara
hal.structure.identifierUniversität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
dc.contributor.authorKIRISITS, Thomas
hal.structure.identifierGlobe Institute
dc.contributor.authorGILBERT, M. Thomas P.
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorHEUERTZ, Myriam
hal.structure.identifierUniversity of Copenhagen = Københavns Universitet [UCPH]
dc.contributor.authorKJÆR, Erik
hal.structure.identifierCentre National de Recherches Forestières de l’Institut Sénégalais de Recherches Agricoles [CNRF]
dc.contributor.authorNIELSEN, Lene
dc.date.accessioned2025-02-12T03:01:35Z
dc.date.available2025-02-12T03:01:35Z
dc.date.issued2025-01-17
dc.identifier.issn0140-7791
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204800
dc.description.abstractEn<div><p>Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F. excelsior requires further investigation. Here, we integrate quantitative genetics based on multiple replicates and genome-wide association analyses with machine learning to reveal the genetic architecture of ash dieback tolerance and of phenological traits in F. excelsior populations in six European countries (Austria, Denmark, Germany, Ireland, Lithuania, Sweden). Based on phenotypic data of 486 F. excelsior replicated genotypes we observed negative genotypic correlations between crown damage caused by ash dieback and intensity of autumn leaf yellowing within multiple sampling sites. Our results suggest that the examined traits are polygenic and using genomic prediction models, with ranked single nucleotide polymorphisms (SNPs) based on GWAS associations as input, a large proportion of the variation was predicted by unlinked SNPs. Based on 100 unlinked SNPs, we can predict 55% of the variation in This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</p></div>
dc.language.isoen
dc.publisherWiley
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enash dieback
dc.subject.encommon ash
dc.subject.endisease
dc.subject.enGWAS
dc.subject.enHymenoscyphus fraxineus
dc.subject.eninvasive alien pathogen
dc.subject.enmachine learning
dc.subject.enphenology
dc.subject.enSNPs
dc.subject.entolerance
dc.title.enMultiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of <i>Fraxinus excelsior</i> Tolerance to Ash Dieback in Europe
dc.typeArticle de revue
dc.identifier.doi10.1111/pce.15361
dc.subject.halSciences de l'environnement
bordeaux.journalPlant, Cell and Environment
bordeaux.hal.laboratoriesBioGeCo (Biodiversité Gènes & Communautés) - UMR 1202*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-04941033
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04941033v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Plant,%20Cell%20and%20Environment&amp;rft.date=2025-01-17&amp;rft.eissn=0140-7791&amp;rft.issn=0140-7791&amp;rft.au=DOONAN,%20James&amp;BUDDE,%20Katharina&amp;KOSAWANG,%20Chatchai&amp;LOBO,%20Albin&amp;VERBYLAITE,%20Rita&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée