Generating Unexpected yet Relevant User Dialog Acts
dc.rights.license | open | en_US |
hal.structure.identifier | Institut des Systèmes Intelligents et de Robotique [ISIR] | |
dc.contributor.author | GALLAND, Lucie | |
hal.structure.identifier | Institut des Systèmes Intelligents et de Robotique [ISIR] | |
dc.contributor.author | PELACHAUD, Catherine | |
hal.structure.identifier | Sommeil, Addiction et Neuropsychiatrie [Bordeaux] [SANPSY] | |
dc.contributor.author | PECUNE, Florian | |
dc.date.accessioned | 2025-01-03T13:32:38Z | |
dc.date.available | 2025-01-03T13:32:38Z | |
dc.date.conference | 2024-09-18 | |
dc.identifier.uri | oai:crossref.org:10.18653/v1/2024.sigdial-1.17 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/204130 | |
dc.description.abstractEn | The demand for mental health services has risen substantially in recent years, leading to challenges in meeting patient needs promptly. Virtual agents capable of emulating motivational interviews (MI) have emerged as a potential solution to address this issue, offering immediate support that is especially beneficial for therapy modalities requiring multiple sessions. However, developing effective patient simulation methods for training MI dialog systems poses challenges, particularly in generating syntactically and contextually correct, and diversified dialog acts while respecting existing patterns and trends in therapy data. This paper investigates data-driven approaches to simulate patients for training MI dialog systems. We propose a novel method that leverages time series models to generate diverse and contextually appropriate patient dialog acts, which are then transformed into utterances by a conditioned large language model. Additionally, we introduce evaluation measures tailored to assess the quality and coherence of simulated patient dialog. Our findings highlight the effectiveness of dialog act-conditioned approaches in improving patient simulation for MI, offering insights for developing virtual agents to support mental health therapy. | |
dc.language.iso | EN | en_US |
dc.publisher | Association for Computational Linguistics | en_US |
dc.source | crossref | |
dc.title.en | Generating Unexpected yet Relevant User Dialog Acts | |
dc.type | Communication dans un congrès | en_US |
dc.identifier.doi | 10.18653/v1/2024.sigdial-1.17 | en_US |
dc.subject.hal | Informatique [cs]/Interface homme-machine [cs.HC] | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Ingénierie biomédicale | en_US |
bordeaux.page | 192-203 | en_US |
bordeaux.hal.laboratories | SANPSY (Sommeil, Addiction, Neuropsychiatrie) - UMR 6033 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.conference.title | 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL) | en_US |
bordeaux.country | jp | en_US |
bordeaux.conference.city | Kyoto | en_US |
bordeaux.import.source | dissemin | |
hal.proceedings | oui | en_US |
hal.conference.end | 2024-09-20 | |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | false | |
workflow.import.source | dissemin | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=192-203&rft.epage=192-203&rft.au=GALLAND,%20Lucie&PELACHAUD,%20Catherine&PECUNE,%20Florian&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |