Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorJOYOT, Pierre
ORCID: 0000-0002-6608-7343
IDREF: 085496057
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorVERDON, Nicolas
dc.contributor.authorBONITHON, Gaël
dc.contributor.authorCHINESTA, Francisco
dc.contributor.authorVILLON, Pierre
dc.date.accessioned2024-12-20T10:07:52Z
dc.date.available2024-12-20T10:07:52Z
dc.date.conference2012-07-02
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204046
dc.description.abstractEnThe Boundary Element Method (BEM) allows efficient solution of partial differential equations whose kernel functions are known. The heat equation is one of these candidates when the thermal parameters are assumed constant (linear model). When the model involves large physical domains and time simulation intervals the amount of information that must be stored increases significantly. This drawback can be circumvented by using advanced strategies, as for example the multi-poles technique. We propose radically different approach that leads to a separated solution of the space and time problems within a non-incremental integration strategy. The technique is based on the use of a space-time separated representation of the unknown field that, introduced in the residual weighting formulation, allows to define a separated solution of the resulting weak form. The spatial step can be then treated by invoking the standard BEM for solving the resulting steady state problem defined in the physical space. Then, the time problem that results in an ordinary first order differential equation is solved using any standard appropriate integration technique (e.g. backward finite differences). When considering the nonlinear heat equation, the BEM cannot be easily applied because its Green’s kernel is generally not known but the use of the PGD presents the advantage of rewriting the problem in such a way that the kernel is now clearly known. Indeed, the system obtained by the PGD is composed of a Poisson equation in space coupled with an ODE in time so that the use of the BEM for solving the spatial part of the problem is efficient. During the solving, we must however separate the nonlinear term into a space-time representation that can limit the method in terms of CPU time and storage, that is why we introduce in the second part of the paper a new approach combining the PGD and the Asymptotic Numerical Method (ANM) in order to efficiently treat the nonlinearity.
dc.language.isoENen_US
dc.publisherAmerican Society of Mechanical Engineersen_US
dc.title.enPGD-BEM Applied to the Nonlinear Heat Equation
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.1115/ESDA2012-82407en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.page205-213en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.conference.titleASME 2012 11th Biennial Conference on Engineering Systems Design and Analysisen_US
bordeaux.countryfren_US
bordeaux.conference.cityNantesen_US
bordeaux.import.sourcehal
hal.identifierhal-01008663
hal.version1
hal.invitednonen_US
hal.proceedingsnonen_US
hal.conference.end2012-07-04
hal.popularnonen_US
hal.audienceNon spécifiéeen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=205-213&rft.epage=205-213&rft.au=JOYOT,%20Pierre&VERDON,%20Nicolas&BONITHON,%20Ga%C3%ABl&CHINESTA,%20Francisco&VILLON,%20Pierre&rft.genre=unknown


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem