Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorNIANGORAN, Serge
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorBARBIERI, Antoine
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorBADJE, Anani
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorJOURNOT, Valerie
ORCID: 0000-0003-1188-9565
IDREF: 24906071X
dc.contributor.authorKOUAME, Gérard
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorMARCY, Olivier
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorANGLARET, Xavier
hal.structure.identifierBordeaux population health [BPH]
hal.structure.identifierGlobal Health in the Global South [GHiGS]
dc.contributor.authorALIOUM, Amadou
dc.date.accessioned2024-11-26T09:20:15Z
dc.date.available2024-11-26T09:20:15Z
dc.date.issued2024-11-12
dc.identifier.issn1946-6315en_US
dc.identifier.urioai:crossref.org:10.1080/19466315.2024.2404631
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/203482
dc.description.abstractEnCentralized statistical monitoring (CSM) detects clinical trial centers in which the distribution of a variable is atypical compared to its distribution in other centers.Most proposed CSMmethods concern quantitative variables. Here we propose a new hierarchical Bayesian beta-binomial (HBBB) method for categorical variables and report the results of a simulation study assessing the performance of the method and of an application study using a real database to assess its usefulness. In the simulation study, sensitivity exceeded 90% when the sample size in the atypical center (Na)was≥20 and the difference in the proportion of events between the atypical center and the other centers (δ) was ≥0.4; when Na was ≥40 and δ ≥0.3; and when Na was ≥150 and δ ≥0.2. Specificity exceeded 90% when Na was ≥150 in all scenarios, and remained between 75% and 90% when Na was lower. In the application study, the method detected two centers in which Na was 50 and 200, and δ was 0.12 and 0.04, respectively. The performance of the HBBB method was similar to that proposed by competing approach. The modeling is easy and specificity is good in many scenarios with a limited sample size.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.subject.enBayesian approach
dc.subject.enBeta-binomial modeling
dc.subject.enCategorical variable
dc.subject.enCentralized statistical monitoring
dc.subject.enMulticenter clinical trial
dc.title.enA new centralized statistical monitoring method for detecting atypical distribution of qualitative variables in multicenter randomized controlled trials
dc.title.alternativeStat Biopharm Resen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1080/19466315.2024.2404631en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.journalStatistics in Biopharmaceutical Researchen_US
bordeaux.page1-14en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamGHIGS_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDInstitut de Recherche pour le Développementen_US
bordeaux.import.sourcedissemin
hal.identifierhal-04804131
hal.version1
hal.date.transferred2024-11-26T09:20:19Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20in%20Biopharmaceutical%20Research&rft.date=2024-11-12&rft.spage=1-14&rft.epage=1-14&rft.eissn=1946-6315&rft.issn=1946-6315&rft.au=NIANGORAN,%20Serge&BARBIERI,%20Antoine&BADJE,%20Anani&JOURNOT,%20Valerie&KOUAME,%20G%C3%A9rard&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée