Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorLE SCOUARNEC, Lisa
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorBOUTELOUP, Vincent
dc.contributor.authorVAN DER VEERE, Pieter J
dc.contributor.authorVAN DER FLIER, Wiesje M
dc.contributor.authorTEUNISSEN, Charlotte E
dc.contributor.authorVERBERK, Inge M W
dc.contributor.authorPLANCHE, Vincent
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCHENE, Genevieve
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDUFOUIL, Carole
dc.date.accessioned2024-10-31T08:35:33Z
dc.date.available2024-10-31T08:35:33Z
dc.date.issued2024-10-11
dc.identifier.issn1758-9193en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/203067
dc.description.abstractEnThe accumulation of amyloid-β (Aβ) peptide in the brain is a hallmark of Alzheimer's disease (AD), occurring years before symptom onset. Current methods for quantifying in vivo amyloid load involve invasive or costly procedures, limiting accessibility. Early detection of amyloid positivity in non-demented individuals is crucial for aiding early AD diagnosis and for initiating anti-amyloid immunotherapies at early stages. This study aimed to develop and validate predictive models to identify brain amyloid positivity in non-demented patients, using routinely collected clinical data. Predictive models for amyloid positivity were developed using data from 853 non-demented participants in the MEMENTO cohort. Amyloid levels were measured potentially repeatedly during study course through Positron Emision Tomography or CerebroSpinal Fluid analysis. The probability of amyloid positivity was modelled using mixed-effects logistic regression. Predictors included demographic information, cognitive assessments, visual brain MRI evaluations of hippocampal atrophy and lobar microbleeds, AD-related blood biomarkers (Aβ42/40 and P-tau181), and ApoE4 status. Models were subjected to internal cross-validation and external validation using data from the Amsterdam Dementia Cohort. Performance also was evaluated in a subsample that met the main criteria of the Appropriate Use Recommendations (AUR) for lecanemab. The most effective model incorporated demographic data, cognitive assessments, ApoE status, and AD-related blood biomarkers, achieving AUCs of 0.82 [95%CI 0.81-0.82] in MEMENTO sample and 0.90 [95%CI 0.86-0.94] in the external validation sample. This model significantly outperformed a reference model based solely on demographic and cognitive data, with an AUC difference in MEMENTO of 0.10 [95%CI 0.10-0.11]. A similar model without ApoE genotype achieved comparable discriminatory performance. MRI markers did not improve model performance. Performances in AUR of lecanemab subsample were comparable. A predictive model integrating demographic, cognitive, and blood biomarker data offers a promising method to help identify amyloid status in non-demented patients. ApoE genotype and brain MRI data were not necessary for strong discriminatory ability, suggesting that ApoE genotyping may be deferred when assessing the risk-benefit ratio of immunotherapies in amyloid-positive patients who desire treatment. The integration of this model into clinical practice could reduce the need for lumbar puncture or PET examinations to confirm amyloid status.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enHumans
dc.subject.enMale
dc.subject.enFemale
dc.subject.enAmyloid beta-Peptides
dc.subject.enAged
dc.subject.enBrain
dc.subject.enAlgorithms
dc.subject.enPositron-Emission Tomography
dc.subject.enMagnetic Resonance Imaging
dc.subject.enBiomarkers
dc.subject.enMiddle Aged
dc.subject.enCohort Studies
dc.subject.entau Proteins
dc.subject.enAged
dc.subject.en80 and over
dc.subject.enPeptide Fragments
dc.subject.enAlzheimer Disease
dc.title.enDevelopment and assessment of algorithms for predicting brain amyloid positivity in a population without dementia.
dc.title.alternativeAlzheimers Res Theren_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1186/s13195-024-01595-5en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed39394180en_US
bordeaux.journalAlzheimer's Research and Therapyen_US
bordeaux.page219en_US
bordeaux.volume16en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamPHARES_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDFondation Plan Alzheimeren_US
bordeaux.identifier.funderIDAvid Radiopharmaceuticalsen_US
bordeaux.identifier.funderIDGE Healthcareen_US
bordeaux.identifier.funderIDFujirebio Europeen_US
bordeaux.import.sourcepubmed
hal.identifierhal-04761349
hal.version1
hal.date.transferred2024-10-31T08:35:38Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcepubmed
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Alzheimer's%20Research%20and%20Therapy&rft.date=2024-10-11&rft.volume=16&rft.issue=1&rft.spage=219&rft.epage=219&rft.eissn=1758-9193&rft.issn=1758-9193&rft.au=LE%20SCOUARNEC,%20Lisa&BOUTELOUP,%20Vincent&VAN%20DER%20VEERE,%20Pieter%20J&VAN%20DER%20FLIER,%20Wiesje%20M&TEUNISSEN,%20Charlotte%20E&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée