Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorSAVEL, Helene
hal.structure.identifierIPSEN Innovation
dc.contributor.authorBARBIER, Sandrine
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPROUST LIMA, Cecile
ORCID: 0000-0002-9884-955X
IDREF: 114375747
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorRONDEAU, Virginie
ORCID: 0000-0001-7109-4831
IDREF: 16662988X
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTHIEBAUT, Rodolphe
hal.structure.identifierIPSEN Innovation
dc.contributor.authorMEYER-LOSIC, Florence
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorRICHERT, Laura
dc.date.accessioned2024-10-30T15:07:28Z
dc.date.available2024-10-30T15:07:28Z
dc.date.issued2023-01-26
dc.identifier.issn2767-9764en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/203012
dc.description.abstractEnIn translational oncology research, the patient-derived xenograft (PDX) model and its use in mouse clinical trials (MCT) are increasingly described. This involves transplanting a human tumor into a mouse and studying its evolution during follow-up or until death. A MCT contains several PDXs in which several mice are randomized to different treatment arms. Our aim was to compare longitudinal modeling of tumor growth using mixed and joint models. Mixed and joint models were compared in a real MCT (N = 225 mice) to estimate the effect of a chemotherapy and a simulation study. Mixed models assume that death is predictable by observed tumor volumes (data missing at random, MAR) while the joint models assume that death depends on nonobserved tumor volumes (data missing not at random, MNAR). In the real dataset, of 103 deaths, 97 mice were sacrificed when reaching a predetermined tumor size (MAR data). Joint and mixed model estimates of tumor growth slopes differed significantly [0.24 (0.13;0.36)log(mm3)/week for mixed model vs. −0.02 [−0.16;0.11] for joint model]. By disrupting the MAR process of mice deaths (inducing MNAR process), the estimate of the joint model was 0.24 [0.04;0.45], close to mixed model estimation for the original dataset. The simulation results confirmed the bias in the slope estimate from the joint model. Using a MCT example, we show that joint model can provide biased estimates under MAR mechanisms of dropout. We thus recommend to carefully choose the statistical model according to nature of mice deaths. Significance: This work brings new arguments to a controversy on the correct choice of statistical modeling methods for the analysis of MCTs. We conclude that mixed models are more robust than joint models.
dc.language.isoENen_US
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enOn the Choice of Longitudinal Models for the Analysis of Antitumor Efficacy in Mouse Clinical Trials of Patient-derived Xenograft Models
dc.title.alternativeCancer Res Communen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1158/2767-9764.CRC-22-0238en_US
dc.subject.halStatistiques [stat]en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed36968232en_US
bordeaux.journalCancer Research Communicationsen_US
bordeaux.page140-147en_US
bordeaux.volume3en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionINRIAen_US
bordeaux.teamBIOSTAT_BPHen_US
bordeaux.teamSISTM_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04403048
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Cancer%20Research%20Communications&rft.date=2023-01-26&rft.volume=3&rft.issue=1&rft.spage=140-147&rft.epage=140-147&rft.eissn=2767-9764&rft.issn=2767-9764&rft.au=SAVEL,%20Helene&BARBIER,%20Sandrine&PROUST%20LIMA,%20Cecile&RONDEAU,%20Virginie&THIEBAUT,%20Rodolphe&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record