Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierESTIA - Institute of technology [ESTIA]
dc.contributor.authorAL RIFAI, Yehya
ORCID: 0000-0002-7195-2346
hal.structure.identifierESTIA - Institute of technology [ESTIA]
dc.contributor.authorAGUILERA GONZALEZ, Adriana
ORCID: 0000-0003-1166-0648
IDREF: 253127653
hal.structure.identifierESTIA - Institute of technology [ESTIA]
dc.contributor.authorVECHIU, Ionel
ORCID: 0000-0003-4108-3546
IDREF: 102417741
dc.date.accessioned2024-09-23T13:30:18Z
dc.date.available2024-09-23T13:30:18Z
dc.date.issued2023-06-14
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201746
dc.description.abstractEnThe correct functioning of the PV system with the desired operational efficiency, under all circumstances, has become a strategic research challenge. Toward this end, faults must be timely diagnosed, detected, and identified to enhance reliability, maintainability, and safety of the PV system. In this context, this paper presents a novel FDD methodology based on Kalman filter (KF) through a model-based approach for online health monitoring of the PV system’s DC side. This approach is formulated on the comparison of two different regression analysis techniques of PV characteristics under global max power point (GMPP) at array level. The first is based on a non-linear polynomial regression equation, whereas the second is based on a multivariate regression method. In particular, the proposed methods show their effectiveness to detected anomalies at low-current with sensor-less irradiation. The performance of the proposed diagnosis methods is evaluated under Matlab/Simulink® with varying environmental conditions.
dc.language.isoENen_US
dc.source.titleRecent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis. ACD 2022. Studies in Systems, Decision and Controlen_US
dc.subject.enPV system
dc.subject.enMonitoring
dc.subject.enKalman filter
dc.subject.enNon-linear polynomial regression
dc.subject.enMultivariate polynomial regression
dc.subject.enFault diagnosis and detection
dc.title.enFault Detection and Diagnosis of PV Systems Using Kalman-Filter Algorithm Based on Multi-zone Polynomial Regression
dc.typeChapitre d'ouvrageen_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Recent%20Developments%20in%20Model-Based%20and%20Data-Driven%20Methods%20for%20Advanced%20Control%20and%20Diagnosis.%20ACD%202022.%20Studies%20in%20Systems,%20Decision%2&rft.date=2023-06-14&rft.au=AL%20RIFAI,%20Yehya&AGUILERA%20GONZALEZ,%20Adriana&VECHIU,%20Ionel&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record