dc.rights.license | open | |
hal.structure.identifier | Laboratoire de Chimie des Polymères Organiques [LCPO] | |
hal.structure.identifier | Team 3 LCPO : Polymer Self-Assembly & Life Sciences | |
dc.contributor.author | HEMERY, Gauvin | |
hal.structure.identifier | Imagerie moléculaire et thérapies innovantes en oncologie [IMOTION] | |
dc.contributor.author | GENEVOIS, Coralie | |
hal.structure.identifier | Imagerie moléculaire et thérapies innovantes en oncologie [IMOTION] | |
dc.contributor.author | COUILLAUD, Franck | |
hal.structure.identifier | Pôle Microscopie Electronique | |
hal.structure.identifier | Bordeaux Imaging Center [BIC] | |
dc.contributor.author | LACOMME, Sabrina | |
hal.structure.identifier | Pôle Microscopie Electronique | |
hal.structure.identifier | Bordeaux Imaging Center [BIC] | |
dc.contributor.author | GONTIER, Etienne | |
hal.structure.identifier | Laboratoire de Chimie des Polymères Organiques [LCPO] | |
hal.structure.identifier | Team 3 LCPO : Polymer Self-Assembly & Life Sciences | |
dc.contributor.author | IBARBOURE, Emmanuel | |
hal.structure.identifier | Laboratoire de Chimie des Polymères Organiques [LCPO] | |
hal.structure.identifier | Team 3 LCPO : Polymer Self-Assembly & Life Sciences | |
dc.contributor.author | LECOMMANDOUX, Sebastien | |
hal.structure.identifier | Laboratoire de Chimie des Polymères Organiques [LCPO] | |
hal.structure.identifier | Team 3 LCPO : Polymer Self-Assembly & Life Sciences | |
dc.contributor.author | GARANGER, Elisabeth | |
hal.structure.identifier | Laboratoire de Chimie des Polymères Organiques [LCPO] | |
hal.structure.identifier | Team 3 LCPO : Polymer Self-Assembly & Life Sciences | |
dc.contributor.author | SANDRE, Olivier | |
dc.date.accessioned | 2020 | |
dc.date.available | 2020 | |
dc.date.issued | 2017 | |
dc.identifier.issn | 2058-9689 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/20081 | |
dc.description.abstractEn | PEGylated magnetic iron oxide nanoparticles (IONPs) were synthesised with the aim to provide proof of concept results of remote cancer cell killing by magnetic fluid hyperthermia. The IONPs were produced by the polyol synthetic route also called “forced hydrolysis pathway” yielding highly superparamagnetic, readily-dispersible, and biocompatible IONPs. As shown previously, adjusting parameters of the reaction led to either monocore or multicore IONPs, with on-demand morphology and magnetic properties. Polyethylene glycol (PEG) was grafted onto the nanoparticles in a single final step, using a phosphonic acid-terminated PEG synthesised separately, a strategy named “convergent”. The magnetic properties of the IONPs were preserved in physiological media thanks to this biocompatible shell. The interaction of the PEGylated IONPs with a glioblastoma cell line was studied, from the stability of IONPs in appropriate cell culture medium to the remotely magnetically triggered cell death. Cellular internalisation of the IONPs was studied, along with their fate after application of an alternating magnetic field (AMF). This investigation highlights the superior efficiency of multicore (nanoflowers) vs monocore (nanospheres) IONPs for magnetic hyperthermia, leading to 80 % cancer cells death in medically translatable conditions. | |
dc.description.sponsorship | Magnéto-Chimiothérapie : Modélisation de la Délivrance Induite par Champ Magnétique Radiofréquence d'Anticancéreux par des Nano-Vésicules Polymères et Suivi par IRM d'un Modèle de Glioblastome - ANR-13-BS08-0017 | |
dc.description.sponsorship | Développment d'une infrastructure française distribuée coordonnée - ANR-10-INBS-04-01/10-INBS-0004 | |
dc.language.iso | en | |
dc.publisher | RSC | |
dc.subject.en | Lysosomal membrane permeability | |
dc.subject.en | Nanotoxicology | |
dc.subject.en | Bioluminescence Imaging | |
dc.subject.en | Magnetic hyperthermia | |
dc.subject.en | Cellular uptake | |
dc.subject.en | Magnetic nanoparticles MNPs | |
dc.title.en | Monocore vs multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1039/C7ME00061H | |
dc.subject.hal | Chimie/Matériaux | |
dc.subject.hal | Chimie/Polymères | |
dc.subject.hal | Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Ingénierie biomédicale/Imagerie | |
dc.description.sponsorshipEurope | Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy | |
bordeaux.journal | Molecular Systems Design & Engineering | |
bordeaux.page | 629-639 | |
bordeaux.volume | 2 | |
bordeaux.hal.laboratories | Laboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629 | * |
bordeaux.issue | 5 | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01628901 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01628901v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecular%20Systems%20Design%20&%20Engineering&rft.date=2017&rft.volume=2&rft.issue=5&rft.spage=629-639&rft.epage=629-639&rft.eissn=2058-9689&rft.issn=2058-9689&rft.au=HEMERY,%20Gauvin&GENEVOIS,%20Coralie&COUILLAUD,%20Franck&LACOMME,%20Sabrina&GONTIER,%20Etienne&rft.genre=article | |