Humidity Monitoring Using a Flexible Polymer- based Microwave Sensor and Machine Learning
dc.rights.license | open | en_US |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | NGOUNE, Bernard Bobby | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | HALLIL, Hamida | |
dc.contributor.author | GEORGE, Julien | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | DEJOUS, Corinne | |
dc.contributor.author | CLOUTET, ERIC | |
dc.contributor.author | BONDU, Benoit | |
dc.contributor.author | BILA, Stephane | |
dc.contributor.author | BAILLARGCAR, Dominique | |
dc.date.accessioned | 2024-06-04T09:40:57Z | |
dc.date.available | 2024-06-04T09:40:57Z | |
dc.date.issued | 2022-10 | |
dc.date.conference | 2022-10-30 | |
dc.identifier.issn | 2473-2001 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/200249 | |
dc.description.abstractEn | This work presents humidity monitoring using a highly sensitive flexible microwave sensor associated with polyethyleneimine sensitive material with high endurance against temperature by a machine learning approach. A climatic chamber was used to generate humidity at different temperatures and a commercialized humidity and temperature sensor was used as a reference. The sensor showed a high frequency sensitivity (−3.65 and -7.69 MHz/%RH in a range of 30 - 50 %RH and 50 - 70%RH respectively), low hysteresis, good reversibility and repeatability. Moreover, the extracted sensing features were associated to linear regression, support vector machine, random forest and k-nearest neighbours regression algorithms for humidity prediction. The performance of the different models was evaluated and random forest (MAE: 1.63 %RH, R2: 0.970, pred time: 0.44s) and k-nearest neighbours ((MAE: 1.52 %RH, R2: 0.971, pred time: 0.12s) showed the best results on prediction on the test data set. | |
dc.language.iso | EN | en_US |
dc.subject | Temperature sensors | |
dc.subject | Support vector machines | |
dc.subject | Sensitivity | |
dc.subject | Humidity | |
dc.subject | Microwave sensors | |
dc.subject | Predictive models | |
dc.subject | Feature extraction | |
dc.subject | Microwave sensor | |
dc.subject | Humidity | |
dc.subject | Machine learning approach | |
dc.subject | Polymer sensitive material | |
dc.subject | Passive resonator | |
dc.title.en | Humidity Monitoring Using a Flexible Polymer- based Microwave Sensor and Machine Learning | |
dc.type | Communication dans un congrès | en_US |
dc.identifier.doi | 10.1109/SENSORS52175.2022.9967126 | en_US |
dc.subject.hal | Sciences de l'ingénieur [physics] | en_US |
bordeaux.page | 1-4 | en_US |
bordeaux.hal.laboratories | IMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | Bordeaux INP | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.conference.title | 2022 IEEE Sensors | en_US |
bordeaux.country | us | en_US |
bordeaux.title.proceeding | 2022 IEEE Sensors | en_US |
bordeaux.team | WAVES-MDA | en_US |
bordeaux.team | WAVES-DEVICES | en_US |
bordeaux.conference.city | Dallas | en_US |
hal.invited | oui | en_US |
hal.proceedings | oui | en_US |
hal.conference.end | 2022-11-02 | |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | false | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2022-10&rft.spage=1-4&rft.epage=1-4&rft.eissn=2473-2001&rft.issn=2473-2001&rft.au=NGOUNE,%20Bernard%20Bobby&HALLIL,%20Hamida&GEORGE,%20Julien&DEJOUS,%20Corinne&CLOUTET,%20ERIC&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |