Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorSRITHARAN, Sujith
dc.contributor.authorVERSINI, Raphaelle
dc.contributor.authorPETIT, Jules
hal.structure.identifierLaboratoire de biogenèse membranaire [LBM]
dc.contributor.authorBAYER, Emmanuelle
hal.structure.identifierLaboratoire de biochimie théorique [Paris] [LBT (UPR_9080)]
dc.contributor.authorTALY, Antoine
dc.date.accessioned2024-05-10T09:15:26Z
dc.date.available2024-05-10T09:15:26Z
dc.date.created2024-01-26
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/199736
dc.description.abstractEnAbstract Multiple C2 Domains and Transmembrane region Proteins (MCTPs) in plants have been identified as important functional and structural components of plasmodesmata cytoplasmic bridges, which are vital for cell-cell communication. MCTPs are endoplasmic reticulum (ER)-associated proteins which contain three to four C2 domains and two transmembrane regions. In this study, we created structural models of Arabidopsis MCTP4 ER-anchor transmembrane region (TMR) domain using several prediction methods based on deep learning. This region, critical for driving ER association, presents a complex domain organization and remains largely unknown. Our study demonstrates that using a single deep-learning method to predict the structure of membrane proteins can be challenging. Our deep learning models presented three different conformations for the MCTP4 structure, provided by different deep learning methods, indicating the potential complexity of the protein’s conformational landscape. For the first time, we used simulations to explore the behaviour of the TMR of MCTPs within the lipid bilayer. We found that the TMR of MCTP4 is not rigid, but can adopt various conformations including some not identified by deep learning tools. These findings underscore the complexity of predicting protein structures. We learned that combining different methods, such as deep learning and simulations, enhances our understanding of complex proteins.
dc.description.sponsorshipDiviser et connecter: mise en place de la communication intercellulaire pendant la division cellulaire - ANR-21-CE13-0016en_US
dc.description.sponsorshipDynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire. - ANR-11-LABX-0011en_US
dc.language.isoENen_US
dc.title.enPrediction of A. thaliana’s MCTP4 Structure using Deep Learning-Based tools and Exploration of Transmembrane domain Dynamics using Coarse-Grained Molecular Dynamics Simulations
dc.typeDocument de travail - Pré-publicationen_US
dc.identifier.doi10.1101/2023.08.04.552001en_US
dc.subject.halChimieen_US
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaireen_US
bordeaux.hal.laboratoriesLaboratoire de Biogenèse Membranaire (LBM) - UMR 5200en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.import.sourcehal
hal.identifierhal-04472182
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.subtypePrepublication/Preprinten_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=SRITHARAN,%20Sujith&VERSINI,%20Raphaelle&PETIT,%20Jules&BAYER,%20Emmanuelle&TALY,%20Antoine&rft.genre=preprint


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée