Show simple item record

hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorGUÉZÉNOC, Julian
hal.structure.identifierIRAMAT-Centre de recherche en physique appliquée à l’archéologie [IRAMAT-CRP2A]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
dc.contributor.authorBASSEL, Léna
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorBUDYNEK, Anne
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
dc.contributor.authorBOUSQUET, Bruno
dc.date.accessioned2024-04-08T12:09:30Z
dc.date.available2024-04-08T12:09:30Z
dc.date.issued2017
dc.identifier.issn0584-8547
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196580
dc.description.abstractEnIn this paper, we demonstrate the importance of variable selection on the prediction ability of LIBS quantitative partial least squares (PLS) models. The spectral lines of potassium at 766.49 nm and 769.90 nm were considered in the framework of an agricultural soils analysis. Univariate models demonstrating very poor correlation between the peak areas of the potassium lines and the related concentration values, a series of PLS models allowed to significantly improve the prediction ability compared to the univariate approach. This improvement was due to advanced variable selection, achieved through the use of two output data provided after PLS calculation, namely the Variable Importance in Projection (VIP) and the Coefficients graph. In this demonstration, the gain was significant because the two spectral lines of potassium at 766.49 nm and 769.90 nm exhibited unusual profiles. Indeed, including in a PLS model only the variables related to the edges of these lines allowed a significant improvement of its predictive ability (Q2 = 0.84, RMSE = 1.49 g/kg) compared to another PLS model only including the variables related to the central parts of these lines (Q2 = 0.78, RMSE = 1.59 g/kg).
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.subjectpotassium
dc.subjectanalyse de sol
dc.subjectsol agricole
dc.subject.enLIBS
dc.subject.enquantitative analysis
dc.subject.envariable selection
dc.subject.envariable influence on projection
dc.subject.encoefficients plot
dc.subject.ensoil analysis
dc.subject.enagricultural soil
dc.title.enVariables selection: a critical issue for quantitative laser-induced breakdown spectroscopy
dc.typeArticle de revue
dc.identifier.doi10.1016/j.sab.2017.05.009
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalSpectrochimica Acta Part B: Atomic Spectroscopy
bordeaux.page6-10
bordeaux.volume134
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-01607993
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01607993v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Spectrochimica%20Acta%20Part%20B:%20Atomic%20Spectroscopy&rft.date=2017&rft.volume=134&rft.spage=6-10&rft.epage=6-10&rft.eissn=0584-8547&rft.issn=0584-8547&rft.au=GU%C3%89Z%C3%89NOC,%20Julian&BASSEL,%20L%C3%A9na&BUDYNEK,%20Anne&BOUSQUET,%20Bruno&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record