Variables selection: a critical issue for quantitative laser-induced breakdown spectroscopy
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | GUÉZÉNOC, Julian | |
hal.structure.identifier | IRAMAT-Centre de recherche en physique appliquée à l’archéologie [IRAMAT-CRP2A] | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
dc.contributor.author | BASSEL, Léna | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | BUDYNEK, Anne | |
hal.structure.identifier | Centre d'Etudes Lasers Intenses et Applications [CELIA] | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
dc.contributor.author | BOUSQUET, Bruno | |
dc.date.accessioned | 2024-04-08T12:09:30Z | |
dc.date.available | 2024-04-08T12:09:30Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0584-8547 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/196580 | |
dc.description.abstractEn | In this paper, we demonstrate the importance of variable selection on the prediction ability of LIBS quantitative partial least squares (PLS) models. The spectral lines of potassium at 766.49 nm and 769.90 nm were considered in the framework of an agricultural soils analysis. Univariate models demonstrating very poor correlation between the peak areas of the potassium lines and the related concentration values, a series of PLS models allowed to significantly improve the prediction ability compared to the univariate approach. This improvement was due to advanced variable selection, achieved through the use of two output data provided after PLS calculation, namely the Variable Importance in Projection (VIP) and the Coefficients graph. In this demonstration, the gain was significant because the two spectral lines of potassium at 766.49 nm and 769.90 nm exhibited unusual profiles. Indeed, including in a PLS model only the variables related to the edges of these lines allowed a significant improvement of its predictive ability (Q2 = 0.84, RMSE = 1.49 g/kg) compared to another PLS model only including the variables related to the central parts of these lines (Q2 = 0.78, RMSE = 1.59 g/kg). | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/ | |
dc.subject | potassium | |
dc.subject | analyse de sol | |
dc.subject | sol agricole | |
dc.subject.en | LIBS | |
dc.subject.en | quantitative analysis | |
dc.subject.en | variable selection | |
dc.subject.en | variable influence on projection | |
dc.subject.en | coefficients plot | |
dc.subject.en | soil analysis | |
dc.subject.en | agricultural soil | |
dc.title.en | Variables selection: a critical issue for quantitative laser-induced breakdown spectroscopy | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.sab.2017.05.009 | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.journal | Spectrochimica Acta Part B: Atomic Spectroscopy | |
bordeaux.page | 6-10 | |
bordeaux.volume | 134 | |
bordeaux.hal.laboratories | Interactions Soil Plant Atmosphere (ISPA) - UMR 1391 | * |
bordeaux.institution | Bordeaux Sciences Agro | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01607993 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01607993v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Spectrochimica%20Acta%20Part%20B:%20Atomic%20Spectroscopy&rft.date=2017&rft.volume=134&rft.spage=6-10&rft.epage=6-10&rft.eissn=0584-8547&rft.issn=0584-8547&rft.au=GU%C3%89Z%C3%89NOC,%20Julian&BASSEL,%20L%C3%A9na&BUDYNEK,%20Anne&BOUSQUET,%20Bruno&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |