Afficher la notice abrégée

hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorRINGEVAL, Bruno
hal.structure.identifierSchool of Geographical Sciences [Bristol]
dc.contributor.authorHOPCROFT, P.
hal.structure.identifierSchool of Geographical Sciences [Bristol]
dc.contributor.authorVALDES, P.
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierICOS-ATC [ICOS-ATC]
dc.contributor.authorCIAIS, Philippe
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation du climat [CLIM]
dc.contributor.authorRAMSTEIN, G.
hal.structure.identifierFaculty of Earth and Life Sciences [Amsterdam] [FALW]
dc.contributor.authorDOLMAN, A.
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation du climat [CLIM]
dc.contributor.authorKAGEYAMA, M.
dc.date.accessioned2024-04-08T12:08:50Z
dc.date.available2024-04-08T12:08:50Z
dc.date.issued2013
dc.identifier.issn1814-9324
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196541
dc.description.abstractEnThe role of different sources and sinks of CH 4 in changes in atmospheric methane ([CH 4 ]) concentration during the last 100 000 yr is still not fully understood. In particular , the magnitude of the change in wetland CH 4 emissions at the Last Glacial Maximum (LGM) relative to the pre-industrial period (PI), as well as during abrupt climatic warming or Dansgaard–Oeschger (D–O) events of the last glacial period, is largely unconstrained. In the present study, we aim to understand the uncertainties related to the param-eterization of the wetland CH 4 emission models relevant to these time periods by using two wetland models of different complexity (SDGVM and ORCHIDEE). These models have been forced by identical climate fields from low-resolution coupled atmosphere–ocean general circulation model (FAMOUS) simulations of these time periods. Both emission models simulate a large decrease in emissions during LGM in comparison to PI consistent with ice core observations and previous modelling studies. The global reduction is much larger in ORCHIDEE than in SDGVM (respectively −67 and −46 %), and whilst the differences can be partially explained by different model sensitivities to temperature, the major reason for spatial differences between the models is the inclusion of freezing of soil water in ORCHIDEE and the resultant impact on methanogenesis substrate availability in boreal regions. Besides, a sensitivity test performed with ORCHIDEE in which the methanogenesis substrate sensitivity to the precipitations is modified to be more realistic gives a LGM reduction of −36 %. The range of the global LGM decrease is still prone to uncertainty, and here we underline its sensitivity to different process parameteri-zations. Over the course of an idealized D–O warming, the magnitude of the change in wetland CH 4 emissions simulated by the two models at global scale is very similar at around 15 Tg yr −1 , but this is only around 25 % of the ice-core measured changes in [CH 4 ]. The two models do show regional differences in emission sensitivity to climate with much larger magnitudes of northern and southern tropical anomalies in ORCHIDEE. However, the simulated northern and southern tropical anomalies partially compensate each other in both models limiting the net flux change. Future work may need to consider the inclusion of more detailed wetland processes (e.g. linked to permafrost or tropical flood-plains), other non-wetland CH 4 sources or different patterns of D–O climate change in order to be able to reconcile emission estimates with the ice-core data for rapid CH 4 events.
dc.language.isoen
dc.publisherEuropean Geosciences Union (EGU)
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enResponse of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard-Oeschger climate event: insights from two models of different complexity
dc.typeArticle de revue
dc.identifier.doi10.5194/cp-9-149-2013
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre/Climatologie
bordeaux.journalClimate of the Past
bordeaux.page149-171
bordeaux.volume9
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue1
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-01806756
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01806756v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Climate%20of%20the%20Past&rft.date=2013&rft.volume=9&rft.issue=1&rft.spage=149-171&rft.epage=149-171&rft.eissn=1814-9324&rft.issn=1814-9324&rft.au=RINGEVAL,%20Bruno&HOPCROFT,%20P.&VALDES,%20P.&CIAIS,%20Philippe&RAMSTEIN,%20G.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée