Mostrar el registro sencillo del ítem

hal.structure.identifierThe University of New Mexico [Albuquerque]
dc.contributor.authorHUANG, Cheng-Wei
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorDOMEC, Jean-Christophe
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorPALMROTH, Sari
hal.structure.identifierThe University of New Mexico [Albuquerque]
dc.contributor.authorPOCKMAN, William T.
hal.structure.identifierThe University of New Mexico [Albuquerque]
dc.contributor.authorLITVAK, Marcy E.
hal.structure.identifierNicholas School of the Environment
hal.structure.identifierDepartment of Civil and Environmental Engineering
hal.structure.identifierInstitute of Meteorology and Climate Research
dc.contributor.authorKATUL, Gabriel G.
dc.date.accessioned2024-04-08T12:04:46Z
dc.date.available2024-04-08T12:04:46Z
dc.date.issued2018
dc.identifier.issn0309-1708
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196322
dc.description.abstractEnLinks between the carbon and water economies of plants are coupled by combining the biochemical demand for atmospheric CO2 with gas transfer through stomates, liquid water transport in the soil-xylem hydraulic system and sucrose export in the phloem. We formulated a model to predict stomatal conductance (g(s)), consistent with the maximum energy circulation concept of Lotka and Odum, by maximizing the sucrose flux out of photosynthesizing leaves. The proposed modeling approach recovers all prior results derived from stomatal optimization theories and profit-maximization arguments for the xylem hydraulic system aimed at predicting g(s). The novel features of this approach are its ability to 1) predict the price of losing water in carbon units using xylem and phloem properties (i.e., the marginal water use efficiency) and 2) explain why water molecules become more expensive to exchange for CO2 molecules when soil moisture becomes limiting or when plants acclimate to new elevated atmospheric CO2 concentration. On short time-scales (sub-daily), predicted g(s) under many environmental stimuli were consistent with measurements reported in the literature, including a general sensitivity of g(s) to vapor pressure deficit and leaf water potential. During progressive droughts, differences in the coordination among the leaf, xylem, and phloem functioning determine the isohydric-to-anisohydric behavior among plants.
dc.language.isoen
dc.publisherElsevier
dc.subject.enacclimation
dc.subject.enisohydric-to-anisohydric behavior
dc.subject.enmarginal water use efficiency
dc.subject.enphloem
dc.subject.enstomatal response
dc.subject.enxylem
dc.title.enTransport in a coordinated soil-root-xylem-phloem leaf system
dc.typeArticle de revue
dc.identifier.doi10.1016/j.advwatres.2018.06.002
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences de l'environnement
bordeaux.journalAdvances in Water Resources
bordeaux.page1-16
bordeaux.volume119
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02625396
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02625396v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances%20in%20Water%20Resources&rft.date=2018&rft.volume=119&rft.spage=1-16&rft.epage=1-16&rft.eissn=0309-1708&rft.issn=0309-1708&rft.au=HUANG,%20Cheng-Wei&DOMEC,%20Jean-Christophe&PALMROTH,%20Sari&POCKMAN,%20William%20T.&LITVAK,%20Marcy%20E.&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem