Mostrar el registro sencillo del ítem

hal.structure.identifierDepartment of Botany
dc.contributor.authorMCCULLOH, Katherine A.
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorDOMEC, Jean-Christophe
hal.structure.identifierWarnell School of Forestry and Natural Resources
dc.contributor.authorJOHNSON, Daniel M.
hal.structure.identifierDepartment of Botany
dc.contributor.authorSMITH, Duncan D.
hal.structure.identifierUnited States Department of Agriculture [USDA]
dc.contributor.authorMEINZER, Frederick C.
dc.date.accessioned2024-04-08T12:03:45Z
dc.date.available2024-04-08T12:03:45Z
dc.date.issued2019
dc.identifier.issn0140-7791
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196282
dc.description.abstractEnThe vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
dc.language.isoen
dc.publisherWiley
dc.subjectcapacitance
dc.subjectplant hydraulics
dc.subjectsoil nutrients
dc.subject.enP50
dc.subject.eniso/anisohydry
dc.subject.envulnerability to embolism
dc.title.enA dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants
dc.typeArticle de revue
dc.identifier.doi10.1111/pce.13607
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences de l'environnement
bordeaux.journalPlant, Cell and Environment
bordeaux.volumeonline first
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02628552
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02628552v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Plant,%20Cell%20and%20Environment&rft.date=2019&rft.volume=online%20first&rft.eissn=0140-7791&rft.issn=0140-7791&rft.au=MCCULLOH,%20Katherine%20A.&DOMEC,%20Jean-Christophe&JOHNSON,%20Daniel%20M.&SMITH,%20Duncan%20D.&MEINZER,%20Frederick%20C.&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem