Afficher la notice abrégée

hal.structure.identifierUniversity of Chinese Academy of Sciences [Beijing] [UCAS]
dc.contributor.authorYAO, Panpan
hal.structure.identifierState Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth
dc.contributor.authorSHI, Jiancheng
hal.structure.identifierState Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth
dc.contributor.authorZHAO, Tianjie
hal.structure.identifierThe Joint Center for Global Change Studies
dc.contributor.authorLU, Hui
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorAL YAARI, Amen
dc.date.accessioned2024-04-08T12:03:31Z
dc.date.available2024-04-08T12:03:31Z
dc.date.issued2017
dc.identifier.issn2072-4292
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196272
dc.description.abstractEnThis study presents a back propagation neural network (BPNN) method to rebuild a global and long-term soil moisture (SM) series, adopting the microwave vegetation index (MVI). The data used in our study include Soil Moisture and Ocean Salinity (SMOS) Level 3 soil moisture (SMOSL3sm) data, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and Advanced Microwave Scanning Radiometer 2 (AMSR2) Level 3 brightness temperature (TB) data and L3 SM products. The BPNNs on each grid were trained over July 2010–June 2011, and the entire year of 2013, with SMOSL3sm as a training target, and taking the reflectivities (Rs) of the C/X/Ku/Ka/Q bands, and the MVI from AMSR-E/AMSR2 TB data, as input, in which the MVI is used to correct for vegetation effects. The training accuracy of networks was evaluated by comparing soil moisture products produced using BPNNs (NNsm hereafter) with SMOSL3sm during the BPNN training period, in terms of correlation coefficient (CC), bias (Bias), and the root mean square error (RMSE). Good global results were obtained with CC = 0.67, RMSE = 0.055 m3/m3 and Bias = −0.0005 m3/m3, particularly over Australia, Central USA, and Central Asia. With these trained networks over each pixel, a global and long-term soil moisture time series, i.e., 2003–2015, was built using AMSR-E TB from 2003 to 2011 and AMSR2 TB from 2012 to 2015. Then, NNsm products were evaluated against in situ SM observations from all SCAN (Soil Climate Analysis Network) sites (SCANsm). The results show that NNsm has a good agreement with in situ data, and can capture the temporal dynamics of in situ SM, with CC = 0.52, RMSE = 0.84 m3/m3 and Bias = −0.002 m3/m3. We also evaluate the accuracy of NNsm by comparing with AMSR-E/AMSR2 SM products, with results of a regression method. As a conclusion, this study provides a promising BPNN method adopting MVI to rebuild a long-term SM time series, and this could provide useful insights for the future Water Cycle Observation Mission (WCOM).
dc.language.isoen
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subjecttélédétection
dc.subjectindice de végétation
dc.subjectanalyse de données
dc.subjectradiomètre
dc.subject.ensoil moisture
dc.subject.enneural network
dc.subject.enlong time series
dc.subject.enmicrowave vegetation index
dc.subject.enremote sensing
dc.subject.endata analysis
dc.subject.enradiometer
dc.title.enRebuilding long time series global soil moisture products using the neural network adopting the microwave vegetation index
dc.typeArticle de revue
dc.identifier.doi10.3390/rs9010035
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.journalRemote Sensing
bordeaux.page27 p.
bordeaux.volume9
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue1
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-01604523
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01604523v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Remote%20Sensing&rft.date=2017&rft.volume=9&rft.issue=1&rft.spage=27%20p.&rft.epage=27%20p.&rft.eissn=2072-4292&rft.issn=2072-4292&rft.au=YAO,%20Panpan&SHI,%20Jiancheng&ZHAO,%20Tianjie&LU,%20Hui&AL%20YAARI,%20Amen&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée