Afficher la notice abrégée

hal.structure.identifierNicholas School of the Environment and Earth Sciences
hal.structure.identifierDepartment of Forest Ecology and Management
dc.contributor.authorTOR-NGERN, Pantana
hal.structure.identifierNicholas School of the Environment and Earth Sciences
hal.structure.identifierDepartment of Forest Ecology and Management
dc.contributor.authorOREN, Ram
hal.structure.identifierDepartment of Forestry and Environmental Resources
dc.contributor.authorWARD, Eric J.
hal.structure.identifierNicholas School of the Environment and Earth Sciences
hal.structure.identifierDepartment of Forest Ecology and Management
dc.contributor.authorPALMROTH, Sari
hal.structure.identifierdepartment of microbiology and plant biology
dc.contributor.authorMCCARTHY, Heather R.
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorDOMEC, Jean-Christophe
dc.date.accessioned2024-04-08T12:02:43Z
dc.date.available2024-04-08T12:02:43Z
dc.date.issued2015
dc.identifier.issn0028-646X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196222
dc.description.abstractEnModels of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2]-induced structural changes, such as increasing leaf-area index (L-D), may cause, or compensate for, reduced mean canopy stomatal conductance (G(S)), keeping transpiration (E-C) and, hence, runoff unaltered. We investigated G(S) responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; +200molmol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8xambient [CO2], suggesting that the observed long-term 21% reduction of G(S) was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, E-C was unaffected by [CO2] because 19% higher canopy L-D nullified the effect of leaf hydraulic acclimation on G(S). We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.
dc.language.isoen
dc.publisherWiley
dc.subject(FACE)
dc.subjectLiquidambar styraciflua
dc.subjectPinus taeda
dc.subjecttranspiration
dc.subject.encanopy stomatal conductance
dc.subject.enelevated CO2
dc.subject.enfree-air CO2 enrichment
dc.title.enIncreases in atmospheric CO(2) have little influence on transpiration of a temperate forest canopy
dc.typeArticle de revue
dc.identifier.doi10.1111/nph.13148
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences de l'environnement
bordeaux.journalNew Phytologist
bordeaux.page518-525
bordeaux.volume205
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue2
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02634015
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02634015v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=New%20Phytologist&rft.date=2015&rft.volume=205&rft.issue=2&rft.spage=518-525&rft.epage=518-525&rft.eissn=0028-646X&rft.issn=0028-646X&rft.au=TOR-NGERN,%20Pantana&OREN,%20Ram&WARD,%20Eric%20J.&PALMROTH,%20Sari&MCCARTHY,%20Heather%20R.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée