Mostrar el registro sencillo del ítem

hal.structure.identifierENSEGID
hal.structure.identifierInstitut de recherche pour le développement [IRD [Tunisie]]
dc.contributor.authorCHEHATA, Nesrine
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
hal.structure.identifierENSEGID
dc.contributor.authorORNY, Camille
hal.structure.identifierENSEGID
dc.contributor.authorBOUKIR, Samia
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorGUYON, Dominique
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorWIGNERON, Jean-Pierre
dc.date.accessioned2024-04-08T12:02:17Z
dc.date.available2024-04-08T12:02:17Z
dc.date.issued2014
dc.identifier.issn0143-1161
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196194
dc.description.abstractEnNatural disasters are generally brutal and may affect large areas, which then need to be rapidly mapped to assess the impacts of such events on ecosystems and to prevent related risks. Ground investigations may be complex, whereas remote-sensing techniques enable a fast regional-scale assessment of damage and offer a cost-effective option for large and inaccessible areas. Here, an efficient, quasi-automatic object-based method for change mapping using high-spatial-resolution (HR) (5–10 m) satellite imagery is proposed. Our contribution comprises two main novelties with respect to similar works in forestry. First, an automatic feature selection process optimizes the image segmentation and classification steps via an original calibration-like procedure. Second, an automatic bitemporal classification enables the separation of damaged and intact areas thanks to a new descriptor based on the level of fragmentation of the obtained regions. The mean shift algorithm is used in both the segmentation and classification processes. The method was assessed in a maritime pine forest using bitemporal HR Formosat-2 multispectral images acquired pre- and post-Windstorm Klaus, which occurred in January 2009 in southwestern France. The binary overall classification accuracy reached 87.8% and outperformed a pixel-based K-means classification with no feature selection. A thematic analysis of the results highlights the correlation between the ages of trees and their sensitivity to wind.
dc.language.isoen
dc.publisherTaylor & Francis
dc.title.enObject-based change detection using high resolution multispectral images: application to forest storm damage mapping
dc.typeArticle de revue
dc.identifier.doi10.1080/01431161.2014.930199
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.journalInternational Journal of Remote Sensing
bordeaux.page4758-4777
bordeaux.volume35
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue13
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02636271
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02636271v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Remote%20Sensing&rft.date=2014&rft.volume=35&rft.issue=13&rft.spage=4758-4777&rft.epage=4758-4777&rft.eissn=0143-1161&rft.issn=0143-1161&rft.au=CHEHATA,%20Nesrine&ORNY,%20Camille&BOUKIR,%20Samia&GUYON,%20Dominique&WIGNERON,%20Jean-Pierre&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem