Mostrar el registro sencillo del ítem

hal.structure.identifierUniversità degli Studi di Padova = University of Padua [Unipd]
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorMANOLI, Gabriele
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorBONETTI, Sara
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorDOMEC, Jean-Christophe
hal.structure.identifierUniversità degli Studi di Padova = University of Padua [Unipd]
dc.contributor.authorPUTTI, Mario
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorKATUL, Gabriel
hal.structure.identifierNicholas School of the Environment
hal.structure.identifierUniversità degli Studi di Padova = University of Padua [Unipd]
dc.contributor.authorMARANI, Marco
dc.date.accessioned2024-04-08T12:01:25Z
dc.date.available2024-04-08T12:01:25Z
dc.date.issued2014
dc.identifier.issn0309-1708
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196154
dc.description.abstractEnCompetition for water among multiple tree rooting systems is investigated using a soil-plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The stomatal conductance is determined by combining a conventional biochemical demand formulation for photosynthesis with an optimization hypothesis that selects stomatal aperture so as to maximize carbon gain for a given water loss. Model results compare well with measurements of soil moisture throughout the rooting zone, of total sap flow in the trunk xylem, as well as of leaf water potential collected in a Loblolly pine forest. The model is then used to diagnose plant responses to water stress in the presence of competing rooting systems. Unsurprisingly, the overlap between rooting zones is shown to enhance soil drying. However, the 3D spatial model yielded transpiration-bulk root-zone soil moisture relations that do not deviate appreciably from their proto-typical form commonly assumed in lumped eco-hydrological models. The increased overlap among rooting systems primarily alters the timing at which the point of incipient soil moisture stress is reached by the entire soil-plant system.
dc.language.isoen
dc.publisherElsevier
dc.subject.enNumerical modeling
dc.subject.enOptimal leaf conductance
dc.subject.enRoot water uptake
dc.subject.enTrees competition
dc.title.enTree root systems competing for soil moisture in a 3D soil-plant model
dc.typeArticle de revue
dc.identifier.doi10.1016/j.advwatres.2014.01.006
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences de l'environnement
bordeaux.journalAdvances in Water Resources
bordeaux.page32-42
bordeaux.volume66
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02641354
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02641354v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances%20in%20Water%20Resources&rft.date=2014&rft.volume=66&rft.spage=32-42&rft.epage=32-42&rft.eissn=0309-1708&rft.issn=0309-1708&rft.au=MANOLI,%20Gabriele&BONETTI,%20Sara&DOMEC,%20Jean-Christophe&PUTTI,%20Mario&KATUL,%20Gabriel&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem