Afficher la notice abrégée

hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
dc.contributor.authorREGNIERS, Olivier
hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
dc.contributor.authorBOMBRUN, Lionel
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorGUYON, Dominique
hal.structure.identifierTelespazio
dc.contributor.authorSAMALENS, Jean-Charles
hal.structure.identifierCentre National d’Etudes Spatiales
dc.contributor.authorTINEL, Claire
hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
dc.contributor.authorGRENIER, Gilbert
hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
dc.contributor.authorGERMAIN, Christian
dc.date.accessioned2024-04-08T11:59:23Z
dc.date.available2024-04-08T11:59:23Z
dc.date.issued2014
dc.date.conference2014-07-13
dc.identifier.isbn978-1-4799-5775-0
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/195989
dc.description.abstractEnThis study evaluates the potential of wavelet-based texture modeling for the classification of stand age in a managed maritime pine forest using very high resolution satellite data. A cross-validation approach based on stand age reference data shows that multivariate modeling of the spatial dependence of wavelet coefficients outperforms the use of features derived from co-occurrence matrices. Simultaneously adding features representing the color dependence and leveling the dominant orientation in anisotropic forest stands enhances the classification performances. These results obtained from panchromatic and multispectral PLEIADES data confirm the ability of such wavelet-based multivariate models to efficiently capture the textural properties of very high resolution forest data and opens up perspectives for their use in the mapping of mono-specific forest structure variables.
dc.language.isoen
dc.publisherIEEE
dc.publisher.location(united states)
dc.subject.enforest structure
dc.subject.entexture analysis
dc.subject.enclassification
dc.subject.envery high resolution
dc.subject.enwavelet
dc.title.enWavelet based texture modeling for the classification of very high resolution maritime pine forest images
dc.typeCommunication dans un congrès
dc.identifier.doi10.1109/IGARSS.2014.6946861
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.conference.titleIGARSS 2014, International Geoscience and Remote Sensing Symposium
bordeaux.countryCA
bordeaux.conference.cityQuébec
bordeaux.peerReviewedoui
hal.identifierhal-02740589
hal.version1
hal.invitednon
hal.conference.organizerIEEE Geoscience and Remote Sensing Society (GRSS). USA.
hal.conference.end2014-07-18
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02740589v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2014&rft.au=REGNIERS,%20Olivier&BOMBRUN,%20Lionel&GUYON,%20Dominique&SAMALENS,%20Jean-Charles&TINEL,%20Claire&rft.isbn=978-1-4799-5775-0&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée