Afficher la notice abrégée

hal.structure.identifierJames Cook University [JCU]
dc.contributor.authorCERNUSAK, Lucas A.
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorBARBETA, Adria
hal.structure.identifierTrier Universität = Trier University = Université de Trèves [Uni Trier]
dc.contributor.authorBÖGELEIN, Rebekka
dc.contributor.authorBUSH, Rosemary T.
hal.structure.identifierUniversitat de Lleida
dc.contributor.authorFERRIO, Juan Pedro
hal.structure.identifierUniversity of Lethbridge
dc.contributor.authorFLANAGAN, Lawrence B.
hal.structure.identifierSwiss Federal Institute for Forest, Snow and Landscape Research WSL
dc.contributor.authorGESSLER, Arthur
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorMARTÍN-GOMEZ, Paula
hal.structure.identifierTechnische Universitat Muenchen
dc.contributor.authorHIRL, Regina
hal.structure.identifierUniversité de Bâle = University of Basel = Basel Universität [Unibas]
dc.contributor.authorKAHMEN, Ansgar
hal.structure.identifierUniversity of Sydney
dc.contributor.authorKEITEL, Claudia
hal.structure.identifierSan Diego State University [SDSU]
dc.contributor.authorLAI, Chun-Ta
hal.structure.identifierJames Cook University [JCU]
dc.contributor.authorMUNKSGAARD, Niels
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorOGÉE, Jérôme
hal.structure.identifierUniversité de Bâle = University of Basel = Basel Universität [Unibas]
dc.contributor.authorNELSON, Daniel B.
hal.structure.identifierSouthern Oregon University [SOU]
dc.contributor.authorRODEN, John S.
hal.structure.identifierTechnische Universitat Muenchen
dc.contributor.authorSCHNYDER, Hans
hal.structure.identifierUtah State University [USU]
dc.contributor.authorVOELKER, Steven
hal.structure.identifierPurdue University [West Lafayette]
dc.contributor.authorWANG, Lixin
hal.structure.identifierAustralian National University [ANU]
dc.contributor.authorSTUART-WILLIAMS, Hilary
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorWINGATE, Lisa
hal.structure.identifierInstitute of Tibetan Plateau Research
dc.contributor.authorYU, Wusheng
hal.structure.identifierNorth-West University [Potchefstroom] [NWU]
dc.contributor.authorZHAO, Liangju
hal.structure.identifierSILVA [SILVA]
dc.contributor.authorCUNTZ, Matthias
dc.date.accessioned2024-04-08T11:56:28Z
dc.date.available2024-04-08T11:56:28Z
dc.date.issued2019
dc.date.conference2019-12-08
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/195757
dc.description.abstractEnSeveral important isotopic biomarkers derive at least part of their signal from leaf water stable isotope composition (e.g., leaf wax δ2H, cellulose δ2H and δ18O, lignin δ18O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls leaf water stable isotope enrichment. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water 2H enrichment could differ from that for 18O enrichment. Our dataset comprises 620 observations from 39 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal into organic material take place. The Craig-Gordon equation was generally a good predictor for daytime leaf water stable isotope composition for both δ2H (R2=0.93, p<0.001) and δ18O (R2=0.70, p<0.001). Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of xylem water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of 2H and 18O are predominantly driven by different environmental variables: leaf water δ2H correlated most strongly with the δ2H of atmospheric vapour (R2=0.79, p<0.001), whereas leaf water δ18O correlated most strongly with air relative humidity (R2=0.45, p<0.001). We conclude that these two isotopic measures are not simply mirror images in the environmental information that they carry. This has with crucial implications for interpretation of isotopic proxies that derive at least part of their composition from leaf water stable isotopes.
dc.language.isoen
dc.title.enThe dominant environmental driver of leaf water stable isotope enrichment differs for 2H compared to 18O
dc.typeAutre communication scientifique (congrès sans actes - poster - séminaire...)
dc.subject.halSciences du Vivant [q-bio]
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.conference.titleAmerican Geophysical Union symposium (AGU Fall Meeting)
bordeaux.countryUS
bordeaux.conference.citySan Francisco
bordeaux.peerReviewedoui
hal.identifierhal-02789758
hal.version1
hal.invitedoui
hal.conference.end2019-12-13
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02789758v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.date=2019&amp;rft.au=CERNUSAK,%20Lucas%20A.&amp;BARBETA,%20Adria&amp;B%C3%96GELEIN,%20Rebekka&amp;BUSH,%20Rosemary%20T.&amp;FERRIO,%20Juan%20Pedro&amp;rft.genre=conference


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée