Mostrar el registro sencillo del ítem
Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
hal.structure.identifier | Department for Innovation in Biological, Agro-Food and Forest Systems | |
dc.contributor.author | TRAMONTANA, Gianluca | |
hal.structure.identifier | Department of Biogeochemical Integration [Jena] | |
dc.contributor.author | MIGLIAVACCA, Mirco | |
hal.structure.identifier | Department of Biogeochemical Integration [Jena] | |
dc.contributor.author | JUNG, Martin | |
hal.structure.identifier | Max Planck Institute for Biogeochemistry [MPI-BGC] | |
dc.contributor.author | REICHSTEIN, Markus | |
hal.structure.identifier | Lawrence Berkeley National Laboratory [Berkeley] [LBNL] | |
dc.contributor.author | KEENAN, Trevor | |
hal.structure.identifier | Universitat de València [UV] | |
dc.contributor.author | CAMPS‐VALLS, Gustau | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | OGÉE, Jérôme | |
hal.structure.identifier | Image Processing Laboratory [IPL] | |
dc.contributor.author | VERRELST, Jochem | |
hal.structure.identifier | DIBAF, University of Tuscia, Via S.C. de Lellis, 01100 Viterbo, Italy | |
dc.contributor.author | PAPALE, Dario | |
dc.date.accessioned | 2024-04-08T11:52:09Z | |
dc.date.available | 2024-04-08T11:52:09Z | |
dc.date.issued | 2020-07-02 | |
dc.identifier.issn | 1354-1013 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/195469 | |
dc.description.abstractEn | The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co-acting factors that modulate GPP and RECO flux dynamics. To overcome this limitation, we developed a hybrid data-driven approach based on combined neural networks (NNC-part). NNIC-part part incorporates process knowledge by introducing a photosynthetic response based on the light-use efficiency (LUE) concept, and uses a comprehensive dataset of soil and micrometeorological variables as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset and found a high consistency in the results with those derived from other standard partitioning methods for both GPP (R-2 > .94) and RECO (R-2 > .8). High consistency was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the ecosystem functional responses. NNC-part performed more realistic than the traditional methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct radiation ratio, and (e) the post rain respiration pulse after a long dry period. In conclusion, NNC-part is a valid data-driven approach to provide GPP and RECO estimates and complementary to the existing partitioning methods. | |
dc.language.iso | en | |
dc.publisher | Wiley | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | carbon dioxide fluxes partitioning | |
dc.subject.en | ecosystem respiration (RECO) | |
dc.subject.en | eddy covariance | |
dc.subject.en | gross primary production (GPP) | |
dc.subject.en | machine learning | |
dc.subject.en | net ecosystem exchange | |
dc.subject.en | neural network | |
dc.title.en | Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1111/gcb.15203 | |
dc.subject.hal | Sciences de l'environnement | |
bordeaux.journal | Global Change Biology | |
bordeaux.page | 5235 - 5253 | |
bordeaux.volume | 26 | |
bordeaux.hal.laboratories | Interactions Soil Plant Atmosphere (ISPA) - UMR 1391 | * |
bordeaux.issue | 9 | |
bordeaux.institution | Bordeaux Sciences Agro | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03173753 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03173753v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Global%20Change%20Biology&rft.date=2020-07-02&rft.volume=26&rft.issue=9&rft.spage=5235%20-%205253&rft.epage=5235%20-%205253&rft.eissn=1354-1013&rft.issn=1354-1013&rft.au=TRAMONTANA,%20Gianluca&MIGLIAVACCA,%20Mirco&JUNG,%20Martin&REICHSTEIN,%20Markus&KEENAN,%20Trevor&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |