hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
dc.contributor.author | ABADIE, Camille | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
hal.structure.identifier | Modélisation des Surfaces et Interfaces Continentales [MOSAIC] | |
dc.contributor.author | MAIGNAN, Fabienne | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
hal.structure.identifier | Modélisation des Surfaces et Interfaces Continentales [MOSAIC] | |
dc.contributor.author | REMAUD, Marine | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | OGÉE, Jérôme | |
hal.structure.identifier | Sierra Nevada Research Institute | |
dc.contributor.author | CAMPBELL, J. Elliott | |
hal.structure.identifier | Rutgers, The State University of New Jersey [New Brunswick] [RU] | |
dc.contributor.author | WHELAN, Mary | |
hal.structure.identifier | Leopold Franzens Universität Innsbruck - University of Innsbruck | |
dc.contributor.author | KITZ, Florian | |
hal.structure.identifier | Leopold Franzens Universität Innsbruck - University of Innsbruck | |
dc.contributor.author | SPIELMANN, Felix | |
hal.structure.identifier | Leopold Franzens Universität Innsbruck - University of Innsbruck | |
dc.contributor.author | WOHLFAHRT, Georg | |
hal.structure.identifier | Center for Atmospheric and Environmental Chemistry [Billerica] | |
dc.contributor.author | WEHR, Richard | |
hal.structure.identifier | Carnegie Institution for Science | |
dc.contributor.author | SUN, Wu | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
dc.contributor.author | RAOULT, Nina | |
hal.structure.identifier | Department of Atmospheric and Oceanic Sciences [Los Angeles] [AOS] | |
dc.contributor.author | SEIBT, Ulli | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
hal.structure.identifier | Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics [MERMAID] | |
dc.contributor.author | HAUGLUSTAINE, Didier | |
hal.structure.identifier | University of Oldenburg | |
hal.structure.identifier | Massachusetts Institute of Technology [MIT] | |
dc.contributor.author | LENNARTZ, Sinikka | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
hal.structure.identifier | ICOS-RAMCES [ICOS-RAMCES] | |
dc.contributor.author | BELVISO, Sauveur | |
hal.structure.identifier | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes [ECOSYS] | |
dc.contributor.author | MONTAGNE, David | |
hal.structure.identifier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE] | |
hal.structure.identifier | Modélisation des Surfaces et Interfaces Continentales [MOSAIC] | |
dc.contributor.author | PEYLIN, Philippe | |
dc.date.accessioned | 2024-04-08T11:47:33Z | |
dc.date.available | 2024-04-08T11:47:33Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.issn | 1726-4170 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/195284 | |
dc.description.abstractEn | Carbonyl sulfide (COS) is an atmospheric trace gas of interest for C cycle research because COS uptake by continental vegetation is strongly related to terrestrial gross primary productivity (GPP), the largest and most uncertain flux in atmospheric CO2 budgets. However, to use atmospheric COS as an additional tracer of GPP, an accurate quantification of COS exchange by soils is also needed. At present, the atmospheric COS budget is unbalanced globally, with total COS flux estimates from oxic and anoxic soils that vary between -409 and -89 GgS yr(-1). This uncertainty hampers the use of atmospheric COS concentrations to constrain GPP estimates through atmospheric transport inversions. In this study we implemented a mechanistic soil COS model in the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) land surface model to simulate COS fluxes in oxic and anoxic soils. Evaluation of the model against flux measurements at seven sites yields a mean root mean square deviation of 1.6 pmolm(-2)s(-1), instead of 2 pmol m(-2)s(-1) when using a previous empirical approach that links soil COS uptake to soil heterotrophic respiration. However, soil COS model evaluation is still limited by the scarcity of observation sites and long-term measurement periods, with all sites located in a latitudinal band between 39 and 62 degrees N and no observations during wintertime in this study. The new model predicts that, globally and over the 2009-2016 period, oxic soils act as a net uptake of -126 GgS yr(-1) and anoxic soils are a source of +96 GgS yr(-1), leading to a global net soil sink of only -30 GgS yr(-1), i.e. much smaller than previous estimates. The small magnitude of the soil fluxes suggests that the error in the COS budget is dominated by the much larger fluxes from plants, oceans, and industrial activities. The predicted spatial distribution of soil COS fluxes, with large emissions from oxic (up to 68.2 pmol COS m(-2) s(-1)) and anoxic (up to 36.8 pmol COS m(-2) S-1) soils in the tropics, especially in India and in the Sahel region, marginally improves the latitudinal gradient of atmospheric COS concentrations, after transport by the LMDZ (Laboratoire de Meteorologie Dynamique) atmospheric transport model. The impact of different soil COS flux representations on the latitudinal gradient of the atmospheric COS concentrations is strongest in the Northern Hemisphere. We also implemented spatiotemporal variations in near-ground atmospheric COS concentrations in the modelling of biospheric COS fluxes, which helped reduce the imbalance of the atmospheric COS budget by lowering soil COS uptake by 10 % and plant COS uptake by 8 % globally (with a revised mean vegetation budget of -576 GgS yr(-1) over 2009-2016). Sensitivity analyses highlighted the different parameters to which each soil COS flux model is the most responsive, selected in a parameter optimization framework. Having both vegetation and soil COS fluxes modelled within ORCHIDEE opens the way for using observed ecosystem COS fluxes and larger-scale atmospheric COS mixing ratios to improve the simulated GPP, through data assimilation techniques. | |
dc.language.iso | en | |
dc.publisher | European Geosciences Union | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | Sulfure de carbonyle | |
dc.title.en | Global modelling of soil carbonyl sulfide exchanges | |
dc.type | Article de revue | |
dc.identifier.doi | 10.5194/bg-19-2427-2022 | |
dc.subject.hal | Planète et Univers [physics]/Océan, Atmosphère | |
dc.subject.hal | Planète et Univers [physics]/Interfaces continentales, environnement | |
bordeaux.journal | Biogeosciences | |
bordeaux.page | 2427 - 2463 | |
bordeaux.volume | 19 | |
bordeaux.hal.laboratories | Interactions Soil Plant Atmosphere (ISPA) - UMR 1391 | * |
bordeaux.issue | 9 | |
bordeaux.institution | Bordeaux Sciences Agro | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03673307 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03673307v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeosciences&rft.date=2022-05-11&rft.volume=19&rft.issue=9&rft.spage=2427%20-%202463&rft.epage=2427%20-%202463&rft.eissn=1726-4170&rft.issn=1726-4170&rft.au=ABADIE,%20Camille&MAIGNAN,%20Fabienne&REMAUD,%20Marine&OG%C3%89E,%20J%C3%A9r%C3%B4me&CAMPBELL,%20J.%20Elliott&rft.genre=article | |