Mostrar el registro sencillo del ítem

hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
dc.contributor.authorABADIE, Camille
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation des Surfaces et Interfaces Continentales [MOSAIC]
dc.contributor.authorMAIGNAN, Fabienne
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation des Surfaces et Interfaces Continentales [MOSAIC]
dc.contributor.authorREMAUD, Marine
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorOGÉE, Jérôme
hal.structure.identifierSierra Nevada Research Institute
dc.contributor.authorCAMPBELL, J. Elliott
hal.structure.identifierRutgers, The State University of New Jersey [New Brunswick] [RU]
dc.contributor.authorWHELAN, Mary
hal.structure.identifierLeopold Franzens Universität Innsbruck - University of Innsbruck
dc.contributor.authorKITZ, Florian
hal.structure.identifierLeopold Franzens Universität Innsbruck - University of Innsbruck
dc.contributor.authorSPIELMANN, Felix
hal.structure.identifierLeopold Franzens Universität Innsbruck - University of Innsbruck
dc.contributor.authorWOHLFAHRT, Georg
hal.structure.identifierCenter for Atmospheric and Environmental Chemistry [Billerica]
dc.contributor.authorWEHR, Richard
hal.structure.identifierCarnegie Institution for Science
dc.contributor.authorSUN, Wu
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
dc.contributor.authorRAOULT, Nina
hal.structure.identifierDepartment of Atmospheric and Oceanic Sciences [Los Angeles] [AOS]
dc.contributor.authorSEIBT, Ulli
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics [MERMAID]
dc.contributor.authorHAUGLUSTAINE, Didier
hal.structure.identifierUniversity of Oldenburg
hal.structure.identifierMassachusetts Institute of Technology [MIT]
dc.contributor.authorLENNARTZ, Sinikka
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierICOS-RAMCES [ICOS-RAMCES]
dc.contributor.authorBELVISO, Sauveur
hal.structure.identifierEcologie fonctionnelle et écotoxicologie des agroécosystèmes [ECOSYS]
dc.contributor.authorMONTAGNE, David
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation des Surfaces et Interfaces Continentales [MOSAIC]
dc.contributor.authorPEYLIN, Philippe
dc.date.accessioned2024-04-08T11:47:33Z
dc.date.available2024-04-08T11:47:33Z
dc.date.issued2022-05-11
dc.identifier.issn1726-4170
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/195284
dc.description.abstractEnCarbonyl sulfide (COS) is an atmospheric trace gas of interest for C cycle research because COS uptake by continental vegetation is strongly related to terrestrial gross primary productivity (GPP), the largest and most uncertain flux in atmospheric CO2 budgets. However, to use atmospheric COS as an additional tracer of GPP, an accurate quantification of COS exchange by soils is also needed. At present, the atmospheric COS budget is unbalanced globally, with total COS flux estimates from oxic and anoxic soils that vary between -409 and -89 GgS yr(-1). This uncertainty hampers the use of atmospheric COS concentrations to constrain GPP estimates through atmospheric transport inversions. In this study we implemented a mechanistic soil COS model in the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) land surface model to simulate COS fluxes in oxic and anoxic soils. Evaluation of the model against flux measurements at seven sites yields a mean root mean square deviation of 1.6 pmolm(-2)s(-1), instead of 2 pmol m(-2)s(-1) when using a previous empirical approach that links soil COS uptake to soil heterotrophic respiration. However, soil COS model evaluation is still limited by the scarcity of observation sites and long-term measurement periods, with all sites located in a latitudinal band between 39 and 62 degrees N and no observations during wintertime in this study. The new model predicts that, globally and over the 2009-2016 period, oxic soils act as a net uptake of -126 GgS yr(-1) and anoxic soils are a source of +96 GgS yr(-1), leading to a global net soil sink of only -30 GgS yr(-1), i.e. much smaller than previous estimates. The small magnitude of the soil fluxes suggests that the error in the COS budget is dominated by the much larger fluxes from plants, oceans, and industrial activities. The predicted spatial distribution of soil COS fluxes, with large emissions from oxic (up to 68.2 pmol COS m(-2) s(-1)) and anoxic (up to 36.8 pmol COS m(-2) S-1) soils in the tropics, especially in India and in the Sahel region, marginally improves the latitudinal gradient of atmospheric COS concentrations, after transport by the LMDZ (Laboratoire de Meteorologie Dynamique) atmospheric transport model. The impact of different soil COS flux representations on the latitudinal gradient of the atmospheric COS concentrations is strongest in the Northern Hemisphere. We also implemented spatiotemporal variations in near-ground atmospheric COS concentrations in the modelling of biospheric COS fluxes, which helped reduce the imbalance of the atmospheric COS budget by lowering soil COS uptake by 10 % and plant COS uptake by 8 % globally (with a revised mean vegetation budget of -576 GgS yr(-1) over 2009-2016). Sensitivity analyses highlighted the different parameters to which each soil COS flux model is the most responsive, selected in a parameter optimization framework. Having both vegetation and soil COS fluxes modelled within ORCHIDEE opens the way for using observed ecosystem COS fluxes and larger-scale atmospheric COS mixing ratios to improve the simulated GPP, through data assimilation techniques.
dc.language.isoen
dc.publisherEuropean Geosciences Union
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enSulfure de carbonyle
dc.title.enGlobal modelling of soil carbonyl sulfide exchanges
dc.typeArticle de revue
dc.identifier.doi10.5194/bg-19-2427-2022
dc.subject.halPlanète et Univers [physics]/Océan, Atmosphère
dc.subject.halPlanète et Univers [physics]/Interfaces continentales, environnement
bordeaux.journalBiogeosciences
bordeaux.page2427 - 2463
bordeaux.volume19
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue9
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-03673307
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03673307v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeosciences&rft.date=2022-05-11&rft.volume=19&rft.issue=9&rft.spage=2427%20-%202463&rft.epage=2427%20-%202463&rft.eissn=1726-4170&rft.issn=1726-4170&rft.au=ABADIE,%20Camille&MAIGNAN,%20Fabienne&REMAUD,%20Marine&OG%C3%89E,%20J%C3%A9r%C3%B4me&CAMPBELL,%20J.%20Elliott&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem