Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBONNEFONT, Michel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGOLENIA, Sylvain
dc.date.accessioned2024-04-04T03:22:34Z
dc.date.available2024-04-04T03:22:34Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194769
dc.description.abstractEnIn this paper, we investigate spectral properties of discrete Laplacians. Our study is based on the Hardy inequality and the use of super-harmonic functions. We recover and improve lower bounds for the bottom of the spectrum and of the essential spectrum. In some situation, we obtain Weyl asymptotics for the eigenvalues. We also provide a probabilistic representation of super-harmonic functions. Using coupling arguments, we set comparison results for the bottom of the spectrum, the bottom of the essential spectrum and the stochastic completeness of different discrete Laplacians. The class of weakly spherically symmetric graphs is also studied in full detail.
dc.language.isoen
dc.subject.endiscrete Laplacian
dc.subject.enlocally finite graphs
dc.subject.enasympotic of eigenvalues
dc.subject.enspectrum
dc.subject.enessential spectrum
dc.subject.enmarkov chains
dc.subject.enfunctional inequalities
dc.title.enEssential spectrum and Weyl asymptotics for discrete Laplacians
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1406.5391
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01010730
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01010730v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BONNEFONT,%20Michel&GOLENIA,%20Sylvain&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée