Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorROYDOR, Jean
dc.date.accessioned2024-04-04T03:22:11Z
dc.date.available2024-04-04T03:22:11Z
dc.date.created2011
dc.date.issued2012
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194731
dc.description.abstractEnWe study the class of dual operator algebras admitting a normal virtual h-diagonal (i.e. a diagonal in the normal Haagerup tensor product), this property can be seen as a dual operator space version of amenability. After giving several characterizations of these algebras, we show this class is stable under algebraic perturbations and cb-isomorphisms with small bound. We also prove some perturbation results for the Kadison-Kastler metric.
dc.language.isoen
dc.title.enDual operator algebras with normal virtual h-diagonal.
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
bordeaux.journalIntegral Equations Operator Theory
bordeaux.pageIntegral Equations Operator Theory 73 (2012), no. 3, 365-382.
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01016331
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01016331v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integral%20Equations%20Operator%20Theory&rft.date=2012&rft.spage=Integral%20Equations%20Operator%20Theory%2073%20(2012),%20no.%203,%20365-382.&rft.epage=Integral%20Equations%20Operator%20Theory%2073%20(2012),%20no.%203,%20365-382.&rft.au=ROYDOR,%20Jean&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée