Néron models of algebraic curves
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | LIU, Qing | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TONG, Jilong | |
dc.date.accessioned | 2024-04-04T03:21:53Z | |
dc.date.available | 2024-04-04T03:21:53Z | |
dc.date.created | 2013-12-17 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194699 | |
dc.description.abstractEn | Let S be a Dedekind scheme with field of functions K. We show that if X_K is a smooth connected proper curve of positive genus over K, then it admits a Néron model over S, i.e., a smooth separated model of finite type satisfying the usual Néron mapping property. It is given by the smooth locus of the minimal proper regular model of X_K over S, as in the case of elliptic curves. When S is excellent, a similar result holds for connected smooth affine curves different from the affine line, with locally finite type Néron models. | |
dc.language.iso | en | |
dc.title.en | Néron models of algebraic curves | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1312.4822 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01023396 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01023396v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=LIU,%20Qing&TONG,%20Jilong&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |