Congruences of models of elliptic curves
hal.structure.identifier | Équipe Théorie des Nombres | |
dc.contributor.author | LIU, Qing | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Morningside Center of Mathematics [MCM] | |
dc.contributor.author | LU, Huajun | |
dc.date.accessioned | 2024-04-04T03:21:52Z | |
dc.date.available | 2024-04-04T03:21:52Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194697 | |
dc.description.abstractEn | Let O_K be discrete valuation ring with a field of fractions K and a perfect residue field. Let E be an elliptic curve over K , let L/K be a finite Galois extension and let O_L be the integral closure of O_K in L. Denote by X' the minimal regular model of E_L over O_L . We show that the special fibers of the minimal Weierstrass model and the minimal regular model of E over O_K are determined by the infinitesimal fiber X'_m together with the action of Gal(L/K ), when m is big enough (depending on the minimal discriminant of E and the different of L/K). | |
dc.language.iso | en | |
dc.title.en | Congruences of models of elliptic curves | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1112/jlms/jdt049 | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1207.0569 | |
bordeaux.journal | J. London Math. Soc | |
bordeaux.page | 899-924 | |
bordeaux.volume | 88 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01023457 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01023457v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=J.%20London%20Math.%20Soc&rft.date=2013&rft.volume=88&rft.spage=899-924&rft.epage=899-924&rft.au=LIU,%20Qing&LU,%20Huajun&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |