Mostrar el registro sencillo del ítem

hal.structure.identifierÉquipe Théorie des Nombres
dc.contributor.authorLIU, Qing
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierMorningside Center of Mathematics [MCM]
dc.contributor.authorLU, Huajun
dc.date.accessioned2024-04-04T03:21:52Z
dc.date.available2024-04-04T03:21:52Z
dc.date.issued2013
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194697
dc.description.abstractEnLet O_K be discrete valuation ring with a field of fractions K and a perfect residue field. Let E be an elliptic curve over K , let L/K be a finite Galois extension and let O_L be the integral closure of O_K in L. Denote by X' the minimal regular model of E_L over O_L . We show that the special fibers of the minimal Weierstrass model and the minimal regular model of E over O_K are determined by the infinitesimal fiber X'_m together with the action of Gal(L/K ), when m is big enough (depending on the minimal discriminant of E and the different of L/K).
dc.language.isoen
dc.title.enCongruences of models of elliptic curves
dc.typeArticle de revue
dc.identifier.doi10.1112/jlms/jdt049
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1207.0569
bordeaux.journalJ. London Math. Soc
bordeaux.page899-924
bordeaux.volume88
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01023457
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01023457v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=J.%20London%20Math.%20Soc&rft.date=2013&rft.volume=88&rft.spage=899-924&rft.epage=899-924&rft.au=LIU,%20Qing&LU,%20Huajun&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem