Afficher la notice abrégée

hal.structure.identifierDepartment of Mathematical Sciences
dc.contributor.authorANDERSSON, Mats
hal.structure.identifierDepartment of Mathematical Sciences
dc.contributor.authorSAMUELSSON, Hakan
hal.structure.identifierDepartment of Mathematics
dc.contributor.authorWULCAN, Elizabeth
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorYGER, Alain
dc.date.accessioned2024-04-04T03:21:32Z
dc.date.available2024-04-04T03:21:32Z
dc.date.created2015
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194665
dc.description.abstractEnLet $J$ be an ideal sheaf on a reduced analytic space $X$ with zero set $Z$. We show that the Lelong numbers of the restrictions to $Z$ of certain generalized Monge-Amp ere products ($dd^c log |f|^2)^k$, where $f$ is a tuple of generators of $J$ , coincide with the so-called Segre numbers of $J$ , introduced independently by Tworzewski and Ga ffney-Gassler. More generally we show that these currents satisfya generalization of the classical King formula that takes into account fixed andmoving components of Vogel cycles associated with $J$ . A basic tool is a new calculusfor products of positive currents of Bochner-Martinelli type. We also discussconnections to intersection theory.
dc.language.isoen
dc.title.enSegre numbers, a generalized King formula , and local intersections
dc.typeDocument de travail - Pré-publication
dc.identifier.doi10.1515/crelle-2014-0109
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01026124
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01026124v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ANDERSSON,%20Mats&SAMUELSSON,%20Hakan&WULCAN,%20Elizabeth&YGER,%20Alain&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée